import argparse import logging import math import os import random import shutil import time from pathlib import Path import numpy as np import torch.distributed as dist import torch.nn.functional as F import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data import yaml from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm import test # import test.py to get mAP after each epoch from models.yolo import Model from utils.datasets import create_dataloader from utils.general import ( torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights, compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging, init_seeds) from utils.google_utils import attempt_download from utils.torch_utils import ModelEMA, select_device, intersect_dicts logger = logging.getLogger(__name__) def train(hyp, opt, device, tb_writer=None): logger.info(f'Hyperparameters {hyp}') log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory wdir = log_dir / 'weights' # weights directory os.makedirs(wdir, exist_ok=True) last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = str(log_dir / 'results.txt') epochs, batch_size, total_batch_size, weights, rank = \ opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank # Save run settings with open(log_dir / 'hyp.yaml', 'w') as f: yaml.dump(hyp, f, sort_keys=False) with open(log_dir / 'opt.yaml', 'w') as f: yaml.dump(vars(opt), f, sort_keys=False) # Configure cuda = device.type != 'cpu' init_seeds(2 + rank) with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict with torch_distributed_zero_first(rank): check_dataset(data_dict) # check train_path = data_dict['train'] test_path = data_dict['val'] nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(rank): attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint if hyp.get('anchors'): ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(opt.cfg, ch=3, nc=nc).to(device) # create # Freeze freeze = ['', ] # parameter names to freeze (full or partial) if any(freeze): for k, v in model.named_parameters(): if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_parameters(): v.requires_grad = True if '.bias' in k: pg2.append(v) # biases elif '.weight' in k and '.bn' not in k: pg1.append(v) # apply weight decay else: pg0.append(v) # all else if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # Results if ckpt.get('training_results') is not None: with open(results_file, 'w') as file: file.write(ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if opt.resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}') # save previous weights if epochs < start_epoch: logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Image sizes gs = int(max(model.stride)) # grid size (max stride) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples # DP mode if cuda and rank == -1 and torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and rank != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') # Exponential moving average ema = ModelEMA(model) if rank in [-1, 0] else None # DDP mode if cuda and rank != -1: model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank) # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, world_size=opt.world_size, workers=opt.workers) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) # Process 0 if rank in [-1, 0]: ema.updates = start_epoch * nb // accumulate # set EMA updates testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False, cache=opt.cache_images and not opt.notest, rect=True, rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader if not opt.resume: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) plot_labels(labels, save_dir=log_dir) if tb_writer: # tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384 tb_writer.add_histogram('classes', c, 0) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # Model parameters hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification' scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n' 'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs)) for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if rank in [-1, 0]: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if rank != -1: indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if rank != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if rank != -1: dataloader.sampler.set_epoch(epoch) pbar = enumerate(dataloader) logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size')) if rank in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou) accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size if rank != -1: loss *= opt.world_size # gradient averaged between devices in DDP mode # Backward scaler.scale(loss).backward() # Optimize if ni % accumulate == 0: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) # Print if rank in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if ni < 3: f = str(log_dir / ('train_batch%g.jpg' % ni)) # filename result = plot_images(images=imgs, targets=targets, paths=paths, fname=f) if tb_writer and result is not None: tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) # tb_writer.add_graph(model, imgs) # add model to tensorboard # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard scheduler.step() # DDP process 0 or single-GPU if rank in [-1, 0]: # mAP if ema: ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride']) final_epoch = epoch + 1 == epochs if not opt.notest or final_epoch: # Calculate mAP results, maps, times = test.test(opt.data, batch_size=total_batch_size, imgsz=imgsz_test, model=ema.ema, single_cls=opt.single_cls, dataloader=testloader, save_dir=log_dir, plots=epoch == 0 or final_epoch) # plot first and last # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls) if len(opt.name) and opt.bucket: os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) # Tensorboard if tb_writer: tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): tb_writer.add_scalar(tag, x, epoch) # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1] if fi > best_fitness: best_fitness = fi # Save model save = (not opt.nosave) or (final_epoch and not opt.evolve) if save: with open(results_file, 'r') as f: # create checkpoint ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'training_results': f.read(), 'model': ema.ema, 'optimizer': None if final_epoch else optimizer.state_dict()} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training if rank in [-1, 0]: # Strip optimizers n = opt.name if opt.name.isnumeric() else '' fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt' for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]): if os.path.exists(f1): os.rename(f1, f2) # rename if str(f2).endswith('.pt'): # is *.pt strip_optimizer(f2) # strip optimizer os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload # Finish if not opt.evolve: plot_results(save_dir=log_dir) # save as results.png logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) dist.destroy_process_group() if rank not in [-1, 0] else None torch.cuda.empty_cache() return results if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path') parser.add_argument('--cfg', type=str, default='', help='model.yaml path') parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') parser.add_argument('--logdir', type=str, default='runs/', help='logging directory') parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers') opt = parser.parse_args() # Set DDP variables opt.total_batch_size = opt.batch_size opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 set_logging(opt.global_rank) if opt.global_rank in [-1, 0]: check_git_status() # Resume if opt.resume: # resume an interrupted run ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path log_dir = Path(ckpt).parent.parent # runs/exp0 assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' with open(log_dir / 'opt.yaml') as f: opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace opt.cfg, opt.weights, opt.resume = '', ckpt, True logger.info('Resuming training from %s' % ckpt) else: # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name) # runs/exp1 device = select_device(opt.device, batch_size=opt.batch_size) # DDP mode if opt.local_rank != -1: assert torch.cuda.device_count() > opt.local_rank torch.cuda.set_device(opt.local_rank) device = torch.device('cuda', opt.local_rank) dist.init_process_group(backend='nccl', init_method='env://') # distributed backend assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count' opt.batch_size = opt.total_batch_size // opt.world_size logger.info(opt) with open(opt.hyp) as f: hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps # Train if not opt.evolve: tb_writer = None if opt.global_rank in [-1, 0]: logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir) tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0 train(hyp, opt, device, tb_writer) # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'giou': (1, 0.02, 0.2), # GIoU loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0)} # image mixup (probability) assert opt.local_rank == -1, 'DDP mode not implemented for --evolve' opt.notest, opt.nosave = True, True # only test/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices yaml_file = Path('runs/evolve/hyp_evolved.yaml') # save best result here if opt.bucket: os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists for _ in range(300): # generations to evolve if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt('evolve.txt', ndmin=2) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() # weights if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([x[0] for x in meta.values()]) # gains 0-1 ng = len(meta) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation results = train(hyp.copy(), opt, device) # Write mutation results print_mutation(hyp.copy(), results, yaml_file, opt.bucket) # Plot results plot_evolution(yaml_file) print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these ' 'hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))