You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

395 lines
19KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Validate a trained YOLOv5 model accuracy on a custom dataset
  4. Usage:
  5. $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640
  6. Usage - formats:
  7. $ python path/to/val.py --weights yolov5s.pt # PyTorch
  8. yolov5s.torchscript # TorchScript
  9. yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
  10. yolov5s.xml # OpenVINO
  11. yolov5s.engine # TensorRT
  12. yolov5s.mlmodel # CoreML (macOS-only)
  13. yolov5s_saved_model # TensorFlow SavedModel
  14. yolov5s.pb # TensorFlow GraphDef
  15. yolov5s.tflite # TensorFlow Lite
  16. yolov5s_edgetpu.tflite # TensorFlow Edge TPU
  17. """
  18. import argparse
  19. import json
  20. import os
  21. import sys
  22. from pathlib import Path
  23. import numpy as np
  24. import torch
  25. from tqdm import tqdm
  26. FILE = Path(__file__).resolve()
  27. ROOT = FILE.parents[0] # YOLOv5 root directory
  28. if str(ROOT) not in sys.path:
  29. sys.path.append(str(ROOT)) # add ROOT to PATH
  30. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  31. from models.common import DetectMultiBackend
  32. from utils.callbacks import Callbacks
  33. from utils.dataloaders import create_dataloader
  34. from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_yaml,
  35. coco80_to_coco91_class, colorstr, emojis, increment_path, non_max_suppression, print_args,
  36. scale_coords, xywh2xyxy, xyxy2xywh)
  37. from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
  38. from utils.plots import output_to_target, plot_images, plot_val_study
  39. from utils.torch_utils import select_device, time_sync
  40. def save_one_txt(predn, save_conf, shape, file):
  41. # Save one txt result
  42. gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
  43. for *xyxy, conf, cls in predn.tolist():
  44. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  45. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  46. with open(file, 'a') as f:
  47. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  48. def save_one_json(predn, jdict, path, class_map):
  49. # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
  50. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  51. box = xyxy2xywh(predn[:, :4]) # xywh
  52. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  53. for p, b in zip(predn.tolist(), box.tolist()):
  54. jdict.append({
  55. 'image_id': image_id,
  56. 'category_id': class_map[int(p[5])],
  57. 'bbox': [round(x, 3) for x in b],
  58. 'score': round(p[4], 5)})
  59. def process_batch(detections, labels, iouv):
  60. """
  61. Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
  62. Arguments:
  63. detections (Array[N, 6]), x1, y1, x2, y2, conf, class
  64. labels (Array[M, 5]), class, x1, y1, x2, y2
  65. Returns:
  66. correct (Array[N, 10]), for 10 IoU levels
  67. """
  68. correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
  69. iou = box_iou(labels[:, 1:], detections[:, :4])
  70. correct_class = labels[:, 0:1] == detections[:, 5]
  71. for i in range(len(iouv)):
  72. x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
  73. if x[0].shape[0]:
  74. matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
  75. if x[0].shape[0] > 1:
  76. matches = matches[matches[:, 2].argsort()[::-1]]
  77. matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
  78. # matches = matches[matches[:, 2].argsort()[::-1]]
  79. matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
  80. correct[matches[:, 1].astype(int), i] = True
  81. return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
  82. @torch.no_grad()
  83. def run(
  84. data,
  85. weights=None, # model.pt path(s)
  86. batch_size=32, # batch size
  87. imgsz=640, # inference size (pixels)
  88. conf_thres=0.001, # confidence threshold
  89. iou_thres=0.6, # NMS IoU threshold
  90. task='val', # train, val, test, speed or study
  91. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  92. workers=8, # max dataloader workers (per RANK in DDP mode)
  93. single_cls=False, # treat as single-class dataset
  94. augment=False, # augmented inference
  95. verbose=False, # verbose output
  96. save_txt=False, # save results to *.txt
  97. save_hybrid=False, # save label+prediction hybrid results to *.txt
  98. save_conf=False, # save confidences in --save-txt labels
  99. save_json=False, # save a COCO-JSON results file
  100. project=ROOT / 'runs/val', # save to project/name
  101. name='exp', # save to project/name
  102. exist_ok=False, # existing project/name ok, do not increment
  103. half=True, # use FP16 half-precision inference
  104. dnn=False, # use OpenCV DNN for ONNX inference
  105. model=None,
  106. dataloader=None,
  107. save_dir=Path(''),
  108. plots=True,
  109. callbacks=Callbacks(),
  110. compute_loss=None,
  111. ):
  112. # Initialize/load model and set device
  113. training = model is not None
  114. if training: # called by train.py
  115. device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
  116. half &= device.type != 'cpu' # half precision only supported on CUDA
  117. model.half() if half else model.float()
  118. else: # called directly
  119. device = select_device(device, batch_size=batch_size)
  120. # Directories
  121. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  122. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  123. # Load model
  124. model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
  125. stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
  126. imgsz = check_img_size(imgsz, s=stride) # check image size
  127. half = model.fp16 # FP16 supported on limited backends with CUDA
  128. if engine:
  129. batch_size = model.batch_size
  130. else:
  131. device = model.device
  132. if not (pt or jit):
  133. batch_size = 1 # export.py models default to batch-size 1
  134. LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
  135. # Data
  136. data = check_dataset(data) # check
  137. # Configure
  138. model.eval()
  139. cuda = device.type != 'cpu'
  140. is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
  141. nc = 1 if single_cls else int(data['nc']) # number of classes
  142. iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
  143. niou = iouv.numel()
  144. # Dataloader
  145. if not training:
  146. if pt and not single_cls: # check --weights are trained on --data
  147. ncm = model.model.nc
  148. assert ncm == nc, f'{weights[0]} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
  149. f'classes). Pass correct combination of --weights and --data that are trained together.'
  150. model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
  151. pad = 0.0 if task in ('speed', 'benchmark') else 0.5
  152. rect = False if task == 'benchmark' else pt # square inference for benchmarks
  153. task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  154. dataloader = create_dataloader(data[task],
  155. imgsz,
  156. batch_size,
  157. stride,
  158. single_cls,
  159. pad=pad,
  160. rect=rect,
  161. workers=workers,
  162. prefix=colorstr(f'{task}: '))[0]
  163. seen = 0
  164. confusion_matrix = ConfusionMatrix(nc=nc)
  165. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  166. class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
  167. s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  168. dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  169. loss = torch.zeros(3, device=device)
  170. jdict, stats, ap, ap_class = [], [], [], []
  171. callbacks.run('on_val_start')
  172. pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
  173. for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
  174. callbacks.run('on_val_batch_start')
  175. t1 = time_sync()
  176. if cuda:
  177. im = im.to(device, non_blocking=True)
  178. targets = targets.to(device)
  179. im = im.half() if half else im.float() # uint8 to fp16/32
  180. im /= 255 # 0 - 255 to 0.0 - 1.0
  181. nb, _, height, width = im.shape # batch size, channels, height, width
  182. t2 = time_sync()
  183. dt[0] += t2 - t1
  184. # Inference
  185. out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
  186. dt[1] += time_sync() - t2
  187. # Loss
  188. if compute_loss:
  189. loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
  190. # NMS
  191. targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
  192. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  193. t3 = time_sync()
  194. out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
  195. dt[2] += time_sync() - t3
  196. # Metrics
  197. for si, pred in enumerate(out):
  198. labels = targets[targets[:, 0] == si, 1:]
  199. nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
  200. path, shape = Path(paths[si]), shapes[si][0]
  201. correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
  202. seen += 1
  203. if npr == 0:
  204. if nl:
  205. stats.append((correct, *torch.zeros((3, 0), device=device)))
  206. continue
  207. # Predictions
  208. if single_cls:
  209. pred[:, 5] = 0
  210. predn = pred.clone()
  211. scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
  212. # Evaluate
  213. if nl:
  214. tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
  215. scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
  216. labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
  217. correct = process_batch(predn, labelsn, iouv)
  218. if plots:
  219. confusion_matrix.process_batch(predn, labelsn)
  220. stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
  221. # Save/log
  222. if save_txt:
  223. save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
  224. if save_json:
  225. save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
  226. callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
  227. # Plot images
  228. if plots and batch_i < 3:
  229. plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
  230. plot_images(im, output_to_target(out), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
  231. callbacks.run('on_val_batch_end')
  232. # Compute metrics
  233. stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
  234. if len(stats) and stats[0].any():
  235. tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  236. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  237. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  238. nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
  239. else:
  240. nt = torch.zeros(1)
  241. # Print results
  242. pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
  243. LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  244. # Print results per class
  245. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  246. for i, c in enumerate(ap_class):
  247. LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  248. # Print speeds
  249. t = tuple(x / seen * 1E3 for x in dt) # speeds per image
  250. if not training:
  251. shape = (batch_size, 3, imgsz, imgsz)
  252. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
  253. # Plots
  254. if plots:
  255. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  256. callbacks.run('on_val_end')
  257. # Save JSON
  258. if save_json and len(jdict):
  259. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  260. anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
  261. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  262. LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
  263. with open(pred_json, 'w') as f:
  264. json.dump(jdict, f)
  265. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  266. check_requirements(['pycocotools'])
  267. from pycocotools.coco import COCO
  268. from pycocotools.cocoeval import COCOeval
  269. anno = COCO(anno_json) # init annotations api
  270. pred = anno.loadRes(pred_json) # init predictions api
  271. eval = COCOeval(anno, pred, 'bbox')
  272. if is_coco:
  273. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
  274. eval.evaluate()
  275. eval.accumulate()
  276. eval.summarize()
  277. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  278. except Exception as e:
  279. LOGGER.info(f'pycocotools unable to run: {e}')
  280. # Return results
  281. model.float() # for training
  282. if not training:
  283. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  284. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
  285. maps = np.zeros(nc) + map
  286. for i, c in enumerate(ap_class):
  287. maps[c] = ap[i]
  288. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  289. def parse_opt():
  290. parser = argparse.ArgumentParser()
  291. parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
  292. parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
  293. parser.add_argument('--batch-size', type=int, default=32, help='batch size')
  294. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  295. parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
  296. parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
  297. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  298. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  299. parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
  300. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  301. parser.add_argument('--augment', action='store_true', help='augmented inference')
  302. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  303. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  304. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  305. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  306. parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
  307. parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
  308. parser.add_argument('--name', default='exp', help='save to project/name')
  309. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  310. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  311. parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
  312. opt = parser.parse_args()
  313. opt.data = check_yaml(opt.data) # check YAML
  314. opt.save_json |= opt.data.endswith('coco.yaml')
  315. opt.save_txt |= opt.save_hybrid
  316. print_args(vars(opt))
  317. return opt
  318. def main(opt):
  319. check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
  320. if opt.task in ('train', 'val', 'test'): # run normally
  321. if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
  322. LOGGER.info(emojis(f'WARNING: confidence threshold {opt.conf_thres} > 0.001 produces invalid results ⚠️'))
  323. run(**vars(opt))
  324. else:
  325. weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
  326. opt.half = True # FP16 for fastest results
  327. if opt.task == 'speed': # speed benchmarks
  328. # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
  329. opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
  330. for opt.weights in weights:
  331. run(**vars(opt), plots=False)
  332. elif opt.task == 'study': # speed vs mAP benchmarks
  333. # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
  334. for opt.weights in weights:
  335. f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
  336. x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
  337. for opt.imgsz in x: # img-size
  338. LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
  339. r, _, t = run(**vars(opt), plots=False)
  340. y.append(r + t) # results and times
  341. np.savetxt(f, y, fmt='%10.4g') # save
  342. os.system('zip -r study.zip study_*.txt')
  343. plot_val_study(x=x) # plot
  344. if __name__ == "__main__":
  345. opt = parse_opt()
  346. main(opt)