You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

538 satır
27KB

  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import shutil
  7. import time
  8. from pathlib import Path
  9. import numpy as np
  10. import torch.distributed as dist
  11. import torch.nn.functional as F
  12. import torch.optim as optim
  13. import torch.optim.lr_scheduler as lr_scheduler
  14. import torch.utils.data
  15. import yaml
  16. from torch.cuda import amp
  17. from torch.nn.parallel import DistributedDataParallel as DDP
  18. from torch.utils.tensorboard import SummaryWriter
  19. from tqdm import tqdm
  20. import test # import test.py to get mAP after each epoch
  21. from models.yolo import Model
  22. from utils.datasets import create_dataloader
  23. from utils.general import (
  24. torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,
  25. compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,
  26. check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging, init_seeds)
  27. from utils.google_utils import attempt_download
  28. from utils.torch_utils import ModelEMA, select_device, intersect_dicts
  29. logger = logging.getLogger(__name__)
  30. def train(hyp, opt, device, tb_writer=None):
  31. logger.info(f'Hyperparameters {hyp}')
  32. log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
  33. wdir = log_dir / 'weights' # weights directory
  34. os.makedirs(wdir, exist_ok=True)
  35. last = wdir / 'last.pt'
  36. best = wdir / 'best.pt'
  37. results_file = str(log_dir / 'results.txt')
  38. epochs, batch_size, total_batch_size, weights, rank = \
  39. opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
  40. # Save run settings
  41. with open(log_dir / 'hyp.yaml', 'w') as f:
  42. yaml.dump(hyp, f, sort_keys=False)
  43. with open(log_dir / 'opt.yaml', 'w') as f:
  44. yaml.dump(vars(opt), f, sort_keys=False)
  45. # Configure
  46. cuda = device.type != 'cpu'
  47. init_seeds(2 + rank)
  48. with open(opt.data) as f:
  49. data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
  50. with torch_distributed_zero_first(rank):
  51. check_dataset(data_dict) # check
  52. train_path = data_dict['train']
  53. test_path = data_dict['val']
  54. nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
  55. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  56. # Model
  57. pretrained = weights.endswith('.pt')
  58. if pretrained:
  59. with torch_distributed_zero_first(rank):
  60. attempt_download(weights) # download if not found locally
  61. ckpt = torch.load(weights, map_location=device) # load checkpoint
  62. if hyp.get('anchors'):
  63. ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
  64. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
  65. exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys
  66. state_dict = ckpt['model'].float().state_dict() # to FP32
  67. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  68. model.load_state_dict(state_dict, strict=False) # load
  69. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  70. else:
  71. model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
  72. # Freeze
  73. freeze = ['', ] # parameter names to freeze (full or partial)
  74. if any(freeze):
  75. for k, v in model.named_parameters():
  76. if any(x in k for x in freeze):
  77. print('freezing %s' % k)
  78. v.requires_grad = False
  79. # Optimizer
  80. nbs = 64 # nominal batch size
  81. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  82. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  83. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  84. for k, v in model.named_parameters():
  85. v.requires_grad = True
  86. if '.bias' in k:
  87. pg2.append(v) # biases
  88. elif '.weight' in k and '.bn' not in k:
  89. pg1.append(v) # apply weight decay
  90. else:
  91. pg0.append(v) # all else
  92. if opt.adam:
  93. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  94. else:
  95. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  96. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  97. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  98. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  99. del pg0, pg1, pg2
  100. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  101. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  102. lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
  103. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  104. # plot_lr_scheduler(optimizer, scheduler, epochs)
  105. # Resume
  106. start_epoch, best_fitness = 0, 0.0
  107. if pretrained:
  108. # Optimizer
  109. if ckpt['optimizer'] is not None:
  110. optimizer.load_state_dict(ckpt['optimizer'])
  111. best_fitness = ckpt['best_fitness']
  112. # Results
  113. if ckpt.get('training_results') is not None:
  114. with open(results_file, 'w') as file:
  115. file.write(ckpt['training_results']) # write results.txt
  116. # Epochs
  117. start_epoch = ckpt['epoch'] + 1
  118. if opt.resume:
  119. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  120. shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}') # save previous weights
  121. if epochs < start_epoch:
  122. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  123. (weights, ckpt['epoch'], epochs))
  124. epochs += ckpt['epoch'] # finetune additional epochs
  125. del ckpt, state_dict
  126. # Image sizes
  127. gs = int(max(model.stride)) # grid size (max stride)
  128. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  129. # DP mode
  130. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  131. model = torch.nn.DataParallel(model)
  132. # SyncBatchNorm
  133. if opt.sync_bn and cuda and rank != -1:
  134. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  135. logger.info('Using SyncBatchNorm()')
  136. # Exponential moving average
  137. ema = ModelEMA(model) if rank in [-1, 0] else None
  138. # DDP mode
  139. if cuda and rank != -1:
  140. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
  141. # Trainloader
  142. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
  143. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,
  144. rank=rank, world_size=opt.world_size, workers=opt.workers)
  145. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  146. nb = len(dataloader) # number of batches
  147. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  148. # Process 0
  149. if rank in [-1, 0]:
  150. ema.updates = start_epoch * nb // accumulate # set EMA updates
  151. testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
  152. hyp=hyp, augment=False, cache=opt.cache_images and not opt.notest, rect=True,
  153. rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader
  154. if not opt.resume:
  155. labels = np.concatenate(dataset.labels, 0)
  156. c = torch.tensor(labels[:, 0]) # classes
  157. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  158. # model._initialize_biases(cf.to(device))
  159. plot_labels(labels, save_dir=log_dir)
  160. if tb_writer:
  161. # tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
  162. tb_writer.add_histogram('classes', c, 0)
  163. # Anchors
  164. if not opt.noautoanchor:
  165. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  166. # Model parameters
  167. hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
  168. model.nc = nc # attach number of classes to model
  169. model.hyp = hyp # attach hyperparameters to model
  170. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  171. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
  172. model.names = names
  173. # Start training
  174. t0 = time.time()
  175. nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
  176. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  177. maps = np.zeros(nc) # mAP per class
  178. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  179. scheduler.last_epoch = start_epoch - 1 # do not move
  180. scaler = amp.GradScaler(enabled=cuda)
  181. logger.info('Image sizes %g train, %g test\n'
  182. 'Using %g dataloader workers\nLogging results to %s\n'
  183. 'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
  184. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  185. model.train()
  186. # Update image weights (optional)
  187. if opt.image_weights:
  188. # Generate indices
  189. if rank in [-1, 0]:
  190. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
  191. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  192. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  193. # Broadcast if DDP
  194. if rank != -1:
  195. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  196. dist.broadcast(indices, 0)
  197. if rank != 0:
  198. dataset.indices = indices.cpu().numpy()
  199. # Update mosaic border
  200. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  201. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  202. mloss = torch.zeros(4, device=device) # mean losses
  203. if rank != -1:
  204. dataloader.sampler.set_epoch(epoch)
  205. pbar = enumerate(dataloader)
  206. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
  207. if rank in [-1, 0]:
  208. pbar = tqdm(pbar, total=nb) # progress bar
  209. optimizer.zero_grad()
  210. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  211. ni = i + nb * epoch # number integrated batches (since train start)
  212. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  213. # Warmup
  214. if ni <= nw:
  215. xi = [0, nw] # x interp
  216. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  217. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  218. for j, x in enumerate(optimizer.param_groups):
  219. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  220. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  221. if 'momentum' in x:
  222. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  223. # Multi-scale
  224. if opt.multi_scale:
  225. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  226. sf = sz / max(imgs.shape[2:]) # scale factor
  227. if sf != 1:
  228. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  229. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  230. # Forward
  231. with amp.autocast(enabled=cuda):
  232. pred = model(imgs) # forward
  233. loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
  234. if rank != -1:
  235. loss *= opt.world_size # gradient averaged between devices in DDP mode
  236. # Backward
  237. scaler.scale(loss).backward()
  238. # Optimize
  239. if ni % accumulate == 0:
  240. scaler.step(optimizer) # optimizer.step
  241. scaler.update()
  242. optimizer.zero_grad()
  243. if ema:
  244. ema.update(model)
  245. # Print
  246. if rank in [-1, 0]:
  247. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  248. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  249. s = ('%10s' * 2 + '%10.4g' * 6) % (
  250. '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
  251. pbar.set_description(s)
  252. # Plot
  253. if ni < 3:
  254. f = str(log_dir / ('train_batch%g.jpg' % ni)) # filename
  255. result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
  256. if tb_writer and result is not None:
  257. tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
  258. # tb_writer.add_graph(model, imgs) # add model to tensorboard
  259. # end batch ------------------------------------------------------------------------------------------------
  260. # Scheduler
  261. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  262. scheduler.step()
  263. # DDP process 0 or single-GPU
  264. if rank in [-1, 0]:
  265. # mAP
  266. if ema:
  267. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
  268. final_epoch = epoch + 1 == epochs
  269. if not opt.notest or final_epoch: # Calculate mAP
  270. results, maps, times = test.test(opt.data,
  271. batch_size=total_batch_size,
  272. imgsz=imgsz_test,
  273. model=ema.ema,
  274. single_cls=opt.single_cls,
  275. dataloader=testloader,
  276. save_dir=log_dir,
  277. plots=epoch == 0 or final_epoch) # plot first and last
  278. # Write
  279. with open(results_file, 'a') as f:
  280. f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  281. if len(opt.name) and opt.bucket:
  282. os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
  283. # Tensorboard
  284. if tb_writer:
  285. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  286. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  287. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  288. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  289. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  290. tb_writer.add_scalar(tag, x, epoch)
  291. # Update best mAP
  292. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  293. if fi > best_fitness:
  294. best_fitness = fi
  295. # Save model
  296. save = (not opt.nosave) or (final_epoch and not opt.evolve)
  297. if save:
  298. with open(results_file, 'r') as f: # create checkpoint
  299. ckpt = {'epoch': epoch,
  300. 'best_fitness': best_fitness,
  301. 'training_results': f.read(),
  302. 'model': ema.ema,
  303. 'optimizer': None if final_epoch else optimizer.state_dict()}
  304. # Save last, best and delete
  305. torch.save(ckpt, last)
  306. if best_fitness == fi:
  307. torch.save(ckpt, best)
  308. del ckpt
  309. # end epoch ----------------------------------------------------------------------------------------------------
  310. # end training
  311. if rank in [-1, 0]:
  312. # Strip optimizers
  313. n = opt.name if opt.name.isnumeric() else ''
  314. fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
  315. for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
  316. if os.path.exists(f1):
  317. os.rename(f1, f2) # rename
  318. if str(f2).endswith('.pt'): # is *.pt
  319. strip_optimizer(f2) # strip optimizer
  320. os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
  321. # Finish
  322. if not opt.evolve:
  323. plot_results(save_dir=log_dir) # save as results.png
  324. logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
  325. dist.destroy_process_group() if rank not in [-1, 0] else None
  326. torch.cuda.empty_cache()
  327. return results
  328. if __name__ == '__main__':
  329. parser = argparse.ArgumentParser()
  330. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  331. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  332. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
  333. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
  334. parser.add_argument('--epochs', type=int, default=300)
  335. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  336. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  337. parser.add_argument('--rect', action='store_true', help='rectangular training')
  338. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  339. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  340. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  341. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  342. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  343. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  344. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  345. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  346. parser.add_argument('--name', default='', help='renames experiment folder exp{N} to exp{N}_{name} if supplied')
  347. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  348. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  349. parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
  350. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  351. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  352. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  353. parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')
  354. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  355. opt = parser.parse_args()
  356. # Set DDP variables
  357. opt.total_batch_size = opt.batch_size
  358. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  359. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  360. set_logging(opt.global_rank)
  361. if opt.global_rank in [-1, 0]:
  362. check_git_status()
  363. # Resume
  364. if opt.resume: # resume an interrupted run
  365. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  366. log_dir = Path(ckpt).parent.parent # runs/exp0
  367. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  368. with open(log_dir / 'opt.yaml') as f:
  369. opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
  370. opt.cfg, opt.weights, opt.resume = '', ckpt, True
  371. logger.info('Resuming training from %s' % ckpt)
  372. else:
  373. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  374. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  375. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  376. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  377. log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name) # runs/exp1
  378. device = select_device(opt.device, batch_size=opt.batch_size)
  379. # DDP mode
  380. if opt.local_rank != -1:
  381. assert torch.cuda.device_count() > opt.local_rank
  382. torch.cuda.set_device(opt.local_rank)
  383. device = torch.device('cuda', opt.local_rank)
  384. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  385. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  386. opt.batch_size = opt.total_batch_size // opt.world_size
  387. logger.info(opt)
  388. with open(opt.hyp) as f:
  389. hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
  390. # Train
  391. if not opt.evolve:
  392. tb_writer = None
  393. if opt.global_rank in [-1, 0]:
  394. logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.logdir}", view at http://localhost:6006/')
  395. tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0
  396. train(hyp, opt, device, tb_writer)
  397. # Evolve hyperparameters (optional)
  398. else:
  399. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  400. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  401. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  402. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  403. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  404. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  405. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  406. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  407. 'box': (1, 0.02, 0.2), # box loss gain
  408. 'cls': (1, 0.2, 4.0), # cls loss gain
  409. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  410. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  411. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  412. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  413. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  414. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  415. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  416. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  417. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  418. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  419. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  420. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  421. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  422. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  423. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  424. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  425. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  426. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  427. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  428. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  429. opt.notest, opt.nosave = True, True # only test/save final epoch
  430. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  431. yaml_file = Path(opt.logdir) / 'evolve' / 'hyp_evolved.yaml' # save best result here
  432. if opt.bucket:
  433. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  434. for _ in range(300): # generations to evolve
  435. if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
  436. # Select parent(s)
  437. parent = 'single' # parent selection method: 'single' or 'weighted'
  438. x = np.loadtxt('evolve.txt', ndmin=2)
  439. n = min(5, len(x)) # number of previous results to consider
  440. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  441. w = fitness(x) - fitness(x).min() # weights
  442. if parent == 'single' or len(x) == 1:
  443. # x = x[random.randint(0, n - 1)] # random selection
  444. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  445. elif parent == 'weighted':
  446. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  447. # Mutate
  448. mp, s = 0.8, 0.2 # mutation probability, sigma
  449. npr = np.random
  450. npr.seed(int(time.time()))
  451. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  452. ng = len(meta)
  453. v = np.ones(ng)
  454. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  455. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  456. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  457. hyp[k] = float(x[i + 7] * v[i]) # mutate
  458. # Constrain to limits
  459. for k, v in meta.items():
  460. hyp[k] = max(hyp[k], v[1]) # lower limit
  461. hyp[k] = min(hyp[k], v[2]) # upper limit
  462. hyp[k] = round(hyp[k], 5) # significant digits
  463. # Train mutation
  464. results = train(hyp.copy(), opt, device)
  465. # Write mutation results
  466. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  467. # Plot results
  468. plot_evolution(yaml_file)
  469. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  470. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')