您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

125 行
5.2KB

  1. """YOLOv5 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
  2. Usage:
  3. import torch
  4. model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
  5. """
  6. import torch
  7. def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
  8. """Creates a specified YOLOv5 model
  9. Arguments:
  10. name (str): name of model, i.e. 'yolov5s'
  11. pretrained (bool): load pretrained weights into the model
  12. channels (int): number of input channels
  13. classes (int): number of model classes
  14. autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
  15. verbose (bool): print all information to screen
  16. Returns:
  17. YOLOv5 pytorch model
  18. """
  19. from pathlib import Path
  20. from models.yolo import Model, attempt_load
  21. from utils.general import check_requirements, set_logging
  22. from utils.google_utils import attempt_download
  23. from utils.torch_utils import select_device
  24. check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))
  25. set_logging(verbose=verbose)
  26. fname = Path(name).with_suffix('.pt') # checkpoint filename
  27. try:
  28. if pretrained and channels == 3 and classes == 80:
  29. model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
  30. else:
  31. cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
  32. model = Model(cfg, channels, classes) # create model
  33. if pretrained:
  34. attempt_download(fname) # download if not found locally
  35. ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
  36. msd = model.state_dict() # model state_dict
  37. csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
  38. csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
  39. model.load_state_dict(csd, strict=False) # load
  40. if len(ckpt['model'].names) == classes:
  41. model.names = ckpt['model'].names # set class names attribute
  42. if autoshape:
  43. model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
  44. device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
  45. return model.to(device)
  46. except Exception as e:
  47. help_url = 'https://github.com/ultralytics/yolov5/issues/36'
  48. s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
  49. raise Exception(s) from e
  50. def custom(path='path/to/model.pt', autoshape=True, verbose=True):
  51. # YOLOv5 custom or local model
  52. return _create(path, autoshape=autoshape, verbose=verbose)
  53. def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
  54. # YOLOv5-small model https://github.com/ultralytics/yolov5
  55. return _create('yolov5s', pretrained, channels, classes, autoshape, verbose)
  56. def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
  57. # YOLOv5-medium model https://github.com/ultralytics/yolov5
  58. return _create('yolov5m', pretrained, channels, classes, autoshape, verbose)
  59. def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
  60. # YOLOv5-large model https://github.com/ultralytics/yolov5
  61. return _create('yolov5l', pretrained, channels, classes, autoshape, verbose)
  62. def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
  63. # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
  64. return _create('yolov5x', pretrained, channels, classes, autoshape, verbose)
  65. def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
  66. # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
  67. return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose)
  68. def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
  69. # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
  70. return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose)
  71. def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
  72. # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
  73. return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose)
  74. def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
  75. # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
  76. return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose)
  77. if __name__ == '__main__':
  78. model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
  79. # model = custom(path='path/to/model.pt') # custom
  80. # Verify inference
  81. import cv2
  82. import numpy as np
  83. from PIL import Image
  84. imgs = ['data/images/zidane.jpg', # filename
  85. 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg', # URI
  86. cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
  87. Image.open('data/images/bus.jpg'), # PIL
  88. np.zeros((320, 640, 3))] # numpy
  89. results = model(imgs) # batched inference
  90. results.print()
  91. results.save()