Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.

1058 lines
43KB

  1. # Dataset utils and dataloaders
  2. import glob
  3. import logging
  4. import math
  5. import os
  6. import random
  7. import shutil
  8. import time
  9. from itertools import repeat
  10. from multiprocessing.pool import ThreadPool
  11. from pathlib import Path
  12. from threading import Thread
  13. import cv2
  14. import numpy as np
  15. import torch
  16. import torch.nn.functional as F
  17. from PIL import Image, ExifTags
  18. from torch.utils.data import Dataset
  19. from tqdm import tqdm
  20. from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, resample_segments, \
  21. clean_str
  22. from utils.torch_utils import torch_distributed_zero_first
  23. # Parameters
  24. help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
  25. img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
  26. vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
  27. logger = logging.getLogger(__name__)
  28. # Get orientation exif tag
  29. for orientation in ExifTags.TAGS.keys():
  30. if ExifTags.TAGS[orientation] == 'Orientation':
  31. break
  32. def get_hash(files):
  33. # Returns a single hash value of a list of files
  34. return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
  35. def exif_size(img):
  36. # Returns exif-corrected PIL size
  37. s = img.size # (width, height)
  38. try:
  39. rotation = dict(img._getexif().items())[orientation]
  40. if rotation == 6: # rotation 270
  41. s = (s[1], s[0])
  42. elif rotation == 8: # rotation 90
  43. s = (s[1], s[0])
  44. except:
  45. pass
  46. return s
  47. def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
  48. rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
  49. # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
  50. with torch_distributed_zero_first(rank):
  51. dataset = LoadImagesAndLabels(path, imgsz, batch_size,
  52. augment=augment, # augment images
  53. hyp=hyp, # augmentation hyperparameters
  54. rect=rect, # rectangular training
  55. cache_images=cache,
  56. single_cls=opt.single_cls,
  57. stride=int(stride),
  58. pad=pad,
  59. image_weights=image_weights,
  60. prefix=prefix)
  61. batch_size = min(batch_size, len(dataset))
  62. nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
  63. sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
  64. loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
  65. # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
  66. dataloader = loader(dataset,
  67. batch_size=batch_size,
  68. num_workers=nw,
  69. sampler=sampler,
  70. pin_memory=True,
  71. collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
  72. return dataloader, dataset
  73. class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
  74. """ Dataloader that reuses workers
  75. Uses same syntax as vanilla DataLoader
  76. """
  77. def __init__(self, *args, **kwargs):
  78. super().__init__(*args, **kwargs)
  79. object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
  80. self.iterator = super().__iter__()
  81. def __len__(self):
  82. return len(self.batch_sampler.sampler)
  83. def __iter__(self):
  84. for i in range(len(self)):
  85. yield next(self.iterator)
  86. class _RepeatSampler(object):
  87. """ Sampler that repeats forever
  88. Args:
  89. sampler (Sampler)
  90. """
  91. def __init__(self, sampler):
  92. self.sampler = sampler
  93. def __iter__(self):
  94. while True:
  95. yield from iter(self.sampler)
  96. class LoadImages: # for inference
  97. def __init__(self, path, img_size=640, stride=32):
  98. p = str(Path(path).absolute()) # os-agnostic absolute path
  99. if '*' in p:
  100. files = sorted(glob.glob(p, recursive=True)) # glob
  101. elif os.path.isdir(p):
  102. files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
  103. elif os.path.isfile(p):
  104. files = [p] # files
  105. else:
  106. raise Exception(f'ERROR: {p} does not exist')
  107. images = [x for x in files if x.split('.')[-1].lower() in img_formats]
  108. videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
  109. ni, nv = len(images), len(videos)
  110. self.img_size = img_size
  111. self.stride = stride
  112. self.files = images + videos
  113. self.nf = ni + nv # number of files
  114. self.video_flag = [False] * ni + [True] * nv
  115. self.mode = 'image'
  116. if any(videos):
  117. self.new_video(videos[0]) # new video
  118. else:
  119. self.cap = None
  120. assert self.nf > 0, f'No images or videos found in {p}. ' \
  121. f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
  122. def __iter__(self):
  123. self.count = 0
  124. return self
  125. def __next__(self):
  126. if self.count == self.nf:
  127. raise StopIteration
  128. path = self.files[self.count]
  129. if self.video_flag[self.count]:
  130. # Read video
  131. self.mode = 'video'
  132. ret_val, img0 = self.cap.read()
  133. if not ret_val:
  134. self.count += 1
  135. self.cap.release()
  136. if self.count == self.nf: # last video
  137. raise StopIteration
  138. else:
  139. path = self.files[self.count]
  140. self.new_video(path)
  141. ret_val, img0 = self.cap.read()
  142. self.frame += 1
  143. print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
  144. else:
  145. # Read image
  146. self.count += 1
  147. img0 = cv2.imread(path) # BGR
  148. assert img0 is not None, 'Image Not Found ' + path
  149. print(f'image {self.count}/{self.nf} {path}: ', end='')
  150. # Padded resize
  151. img = letterbox(img0, self.img_size, stride=self.stride)[0]
  152. # Convert
  153. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  154. img = np.ascontiguousarray(img)
  155. return path, img, img0, self.cap
  156. def new_video(self, path):
  157. self.frame = 0
  158. self.cap = cv2.VideoCapture(path)
  159. self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
  160. def __len__(self):
  161. return self.nf # number of files
  162. class LoadWebcam: # for inference
  163. def __init__(self, pipe='0', img_size=640, stride=32):
  164. self.img_size = img_size
  165. self.stride = stride
  166. if pipe.isnumeric():
  167. pipe = eval(pipe) # local camera
  168. # pipe = 'rtsp://192.168.1.64/1' # IP camera
  169. # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
  170. # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
  171. self.pipe = pipe
  172. self.cap = cv2.VideoCapture(pipe) # video capture object
  173. self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
  174. def __iter__(self):
  175. self.count = -1
  176. return self
  177. def __next__(self):
  178. self.count += 1
  179. if cv2.waitKey(1) == ord('q'): # q to quit
  180. self.cap.release()
  181. cv2.destroyAllWindows()
  182. raise StopIteration
  183. # Read frame
  184. if self.pipe == 0: # local camera
  185. ret_val, img0 = self.cap.read()
  186. img0 = cv2.flip(img0, 1) # flip left-right
  187. else: # IP camera
  188. n = 0
  189. while True:
  190. n += 1
  191. self.cap.grab()
  192. if n % 30 == 0: # skip frames
  193. ret_val, img0 = self.cap.retrieve()
  194. if ret_val:
  195. break
  196. # Print
  197. assert ret_val, f'Camera Error {self.pipe}'
  198. img_path = 'webcam.jpg'
  199. print(f'webcam {self.count}: ', end='')
  200. # Padded resize
  201. img = letterbox(img0, self.img_size, stride=self.stride)[0]
  202. # Convert
  203. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  204. img = np.ascontiguousarray(img)
  205. return img_path, img, img0, None
  206. def __len__(self):
  207. return 0
  208. class LoadStreams: # multiple IP or RTSP cameras
  209. def __init__(self, sources='streams.txt', img_size=640, stride=32):
  210. self.mode = 'stream'
  211. self.img_size = img_size
  212. self.stride = stride
  213. if os.path.isfile(sources):
  214. with open(sources, 'r') as f:
  215. sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
  216. else:
  217. sources = [sources]
  218. n = len(sources)
  219. self.imgs = [None] * n
  220. self.sources = [clean_str(x) for x in sources] # clean source names for later
  221. for i, s in enumerate(sources):
  222. # Start the thread to read frames from the video stream
  223. print(f'{i + 1}/{n}: {s}... ', end='')
  224. cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
  225. assert cap.isOpened(), f'Failed to open {s}'
  226. w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  227. h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  228. fps = cap.get(cv2.CAP_PROP_FPS) % 100
  229. _, self.imgs[i] = cap.read() # guarantee first frame
  230. thread = Thread(target=self.update, args=([i, cap]), daemon=True)
  231. print(f' success ({w}x{h} at {fps:.2f} FPS).')
  232. thread.start()
  233. print('') # newline
  234. # check for common shapes
  235. s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
  236. self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
  237. if not self.rect:
  238. print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
  239. def update(self, index, cap):
  240. # Read next stream frame in a daemon thread
  241. n = 0
  242. while cap.isOpened():
  243. n += 1
  244. # _, self.imgs[index] = cap.read()
  245. cap.grab()
  246. if n == 4: # read every 4th frame
  247. success, im = cap.retrieve()
  248. self.imgs[index] = im if success else self.imgs[index] * 0
  249. n = 0
  250. time.sleep(0.01) # wait time
  251. def __iter__(self):
  252. self.count = -1
  253. return self
  254. def __next__(self):
  255. self.count += 1
  256. img0 = self.imgs.copy()
  257. if cv2.waitKey(1) == ord('q'): # q to quit
  258. cv2.destroyAllWindows()
  259. raise StopIteration
  260. # Letterbox
  261. img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
  262. # Stack
  263. img = np.stack(img, 0)
  264. # Convert
  265. img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
  266. img = np.ascontiguousarray(img)
  267. return self.sources, img, img0, None
  268. def __len__(self):
  269. return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
  270. def img2label_paths(img_paths):
  271. # Define label paths as a function of image paths
  272. sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
  273. return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
  274. class LoadImagesAndLabels(Dataset): # for training/testing
  275. def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
  276. cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
  277. self.img_size = img_size
  278. self.augment = augment
  279. self.hyp = hyp
  280. self.image_weights = image_weights
  281. self.rect = False if image_weights else rect
  282. self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
  283. self.mosaic_border = [-img_size // 2, -img_size // 2]
  284. self.stride = stride
  285. self.path = path
  286. try:
  287. f = [] # image files
  288. for p in path if isinstance(path, list) else [path]:
  289. p = Path(p) # os-agnostic
  290. if p.is_dir(): # dir
  291. f += glob.glob(str(p / '**' / '*.*'), recursive=True)
  292. # f = list(p.rglob('**/*.*')) # pathlib
  293. elif p.is_file(): # file
  294. with open(p, 'r') as t:
  295. t = t.read().strip().splitlines()
  296. parent = str(p.parent) + os.sep
  297. f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
  298. # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
  299. else:
  300. raise Exception(f'{prefix}{p} does not exist')
  301. self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
  302. # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
  303. assert self.img_files, f'{prefix}No images found'
  304. except Exception as e:
  305. raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
  306. # Check cache
  307. self.label_files = img2label_paths(self.img_files) # labels
  308. cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
  309. if cache_path.is_file():
  310. cache, exists = torch.load(cache_path), True # load
  311. if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed
  312. cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
  313. else:
  314. cache, exists = self.cache_labels(cache_path, prefix), False # cache
  315. # Display cache
  316. nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
  317. if exists:
  318. d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  319. tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
  320. assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
  321. # Read cache
  322. cache.pop('hash') # remove hash
  323. cache.pop('version') # remove version
  324. labels, shapes, self.segments = zip(*cache.values())
  325. self.labels = list(labels)
  326. self.shapes = np.array(shapes, dtype=np.float64)
  327. self.img_files = list(cache.keys()) # update
  328. self.label_files = img2label_paths(cache.keys()) # update
  329. if single_cls:
  330. for x in self.labels:
  331. x[:, 0] = 0
  332. n = len(shapes) # number of images
  333. bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
  334. nb = bi[-1] + 1 # number of batches
  335. self.batch = bi # batch index of image
  336. self.n = n
  337. self.indices = range(n)
  338. # Rectangular Training
  339. if self.rect:
  340. # Sort by aspect ratio
  341. s = self.shapes # wh
  342. ar = s[:, 1] / s[:, 0] # aspect ratio
  343. irect = ar.argsort()
  344. self.img_files = [self.img_files[i] for i in irect]
  345. self.label_files = [self.label_files[i] for i in irect]
  346. self.labels = [self.labels[i] for i in irect]
  347. self.shapes = s[irect] # wh
  348. ar = ar[irect]
  349. # Set training image shapes
  350. shapes = [[1, 1]] * nb
  351. for i in range(nb):
  352. ari = ar[bi == i]
  353. mini, maxi = ari.min(), ari.max()
  354. if maxi < 1:
  355. shapes[i] = [maxi, 1]
  356. elif mini > 1:
  357. shapes[i] = [1, 1 / mini]
  358. self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
  359. # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
  360. self.imgs = [None] * n
  361. if cache_images:
  362. gb = 0 # Gigabytes of cached images
  363. self.img_hw0, self.img_hw = [None] * n, [None] * n
  364. results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
  365. pbar = tqdm(enumerate(results), total=n)
  366. for i, x in pbar:
  367. self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
  368. gb += self.imgs[i].nbytes
  369. pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
  370. pbar.close()
  371. def cache_labels(self, path=Path('./labels.cache'), prefix=''):
  372. # Cache dataset labels, check images and read shapes
  373. x = {} # dict
  374. nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
  375. pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
  376. for i, (im_file, lb_file) in enumerate(pbar):
  377. try:
  378. # verify images
  379. im = Image.open(im_file)
  380. im.verify() # PIL verify
  381. shape = exif_size(im) # image size
  382. segments = [] # instance segments
  383. assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
  384. assert im.format.lower() in img_formats, f'invalid image format {im.format}'
  385. # verify labels
  386. if os.path.isfile(lb_file):
  387. nf += 1 # label found
  388. with open(lb_file, 'r') as f:
  389. l = [x.split() for x in f.read().strip().splitlines()]
  390. if any([len(x) > 8 for x in l]): # is segment
  391. classes = np.array([x[0] for x in l], dtype=np.float32)
  392. segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
  393. l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
  394. l = np.array(l, dtype=np.float32)
  395. if len(l):
  396. assert l.shape[1] == 5, 'labels require 5 columns each'
  397. assert (l >= 0).all(), 'negative labels'
  398. assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
  399. assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
  400. else:
  401. ne += 1 # label empty
  402. l = np.zeros((0, 5), dtype=np.float32)
  403. else:
  404. nm += 1 # label missing
  405. l = np.zeros((0, 5), dtype=np.float32)
  406. x[im_file] = [l, shape, segments]
  407. except Exception as e:
  408. nc += 1
  409. print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
  410. pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
  411. f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  412. pbar.close()
  413. if nf == 0:
  414. print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
  415. x['hash'] = get_hash(self.label_files + self.img_files)
  416. x['results'] = nf, nm, ne, nc, i + 1
  417. x['version'] = 0.1 # cache version
  418. torch.save(x, path) # save for next time
  419. logging.info(f'{prefix}New cache created: {path}')
  420. return x
  421. def __len__(self):
  422. return len(self.img_files)
  423. # def __iter__(self):
  424. # self.count = -1
  425. # print('ran dataset iter')
  426. # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
  427. # return self
  428. def __getitem__(self, index):
  429. index = self.indices[index] # linear, shuffled, or image_weights
  430. hyp = self.hyp
  431. mosaic = self.mosaic and random.random() < hyp['mosaic']
  432. if mosaic:
  433. # Load mosaic
  434. img, labels = load_mosaic(self, index)
  435. shapes = None
  436. # MixUp https://arxiv.org/pdf/1710.09412.pdf
  437. if random.random() < hyp['mixup']:
  438. img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
  439. r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
  440. img = (img * r + img2 * (1 - r)).astype(np.uint8)
  441. labels = np.concatenate((labels, labels2), 0)
  442. else:
  443. # Load image
  444. img, (h0, w0), (h, w) = load_image(self, index)
  445. # Letterbox
  446. shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
  447. img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
  448. shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
  449. labels = self.labels[index].copy()
  450. if labels.size: # normalized xywh to pixel xyxy format
  451. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
  452. if self.augment:
  453. # Augment imagespace
  454. if not mosaic:
  455. img, labels = random_perspective(img, labels,
  456. degrees=hyp['degrees'],
  457. translate=hyp['translate'],
  458. scale=hyp['scale'],
  459. shear=hyp['shear'],
  460. perspective=hyp['perspective'])
  461. # Augment colorspace
  462. augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
  463. # Apply cutouts
  464. # if random.random() < 0.9:
  465. # labels = cutout(img, labels)
  466. nL = len(labels) # number of labels
  467. if nL:
  468. labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
  469. labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
  470. labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
  471. if self.augment:
  472. # flip up-down
  473. if random.random() < hyp['flipud']:
  474. img = np.flipud(img)
  475. if nL:
  476. labels[:, 2] = 1 - labels[:, 2]
  477. # flip left-right
  478. if random.random() < hyp['fliplr']:
  479. img = np.fliplr(img)
  480. if nL:
  481. labels[:, 1] = 1 - labels[:, 1]
  482. labels_out = torch.zeros((nL, 6))
  483. if nL:
  484. labels_out[:, 1:] = torch.from_numpy(labels)
  485. # Convert
  486. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  487. img = np.ascontiguousarray(img)
  488. return torch.from_numpy(img), labels_out, self.img_files[index], shapes
  489. @staticmethod
  490. def collate_fn(batch):
  491. img, label, path, shapes = zip(*batch) # transposed
  492. for i, l in enumerate(label):
  493. l[:, 0] = i # add target image index for build_targets()
  494. return torch.stack(img, 0), torch.cat(label, 0), path, shapes
  495. @staticmethod
  496. def collate_fn4(batch):
  497. img, label, path, shapes = zip(*batch) # transposed
  498. n = len(shapes) // 4
  499. img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
  500. ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
  501. wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
  502. s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
  503. for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
  504. i *= 4
  505. if random.random() < 0.5:
  506. im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
  507. 0].type(img[i].type())
  508. l = label[i]
  509. else:
  510. im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
  511. l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
  512. img4.append(im)
  513. label4.append(l)
  514. for i, l in enumerate(label4):
  515. l[:, 0] = i # add target image index for build_targets()
  516. return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
  517. # Ancillary functions --------------------------------------------------------------------------------------------------
  518. def load_image(self, index):
  519. # loads 1 image from dataset, returns img, original hw, resized hw
  520. img = self.imgs[index]
  521. if img is None: # not cached
  522. path = self.img_files[index]
  523. img = cv2.imread(path) # BGR
  524. assert img is not None, 'Image Not Found ' + path
  525. h0, w0 = img.shape[:2] # orig hw
  526. r = self.img_size / max(h0, w0) # resize image to img_size
  527. if r != 1: # always resize down, only resize up if training with augmentation
  528. interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
  529. img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
  530. return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
  531. else:
  532. return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
  533. def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
  534. r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
  535. hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
  536. dtype = img.dtype # uint8
  537. x = np.arange(0, 256, dtype=np.int16)
  538. lut_hue = ((x * r[0]) % 180).astype(dtype)
  539. lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
  540. lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
  541. img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
  542. cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
  543. def hist_equalize(img, clahe=True, bgr=False):
  544. # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
  545. yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
  546. if clahe:
  547. c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
  548. yuv[:, :, 0] = c.apply(yuv[:, :, 0])
  549. else:
  550. yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
  551. return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
  552. def load_mosaic(self, index):
  553. # loads images in a 4-mosaic
  554. labels4, segments4 = [], []
  555. s = self.img_size
  556. yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
  557. indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
  558. for i, index in enumerate(indices):
  559. # Load image
  560. img, _, (h, w) = load_image(self, index)
  561. # place img in img4
  562. if i == 0: # top left
  563. img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  564. x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
  565. x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
  566. elif i == 1: # top right
  567. x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
  568. x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
  569. elif i == 2: # bottom left
  570. x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
  571. x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
  572. elif i == 3: # bottom right
  573. x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
  574. x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
  575. img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  576. padw = x1a - x1b
  577. padh = y1a - y1b
  578. # Labels
  579. labels, segments = self.labels[index].copy(), self.segments[index].copy()
  580. if labels.size:
  581. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
  582. segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
  583. labels4.append(labels)
  584. segments4.extend(segments)
  585. # Concat/clip labels
  586. labels4 = np.concatenate(labels4, 0)
  587. for x in (labels4[:, 1:], *segments4):
  588. np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
  589. # img4, labels4 = replicate(img4, labels4) # replicate
  590. # Augment
  591. img4, labels4 = random_perspective(img4, labels4, segments4,
  592. degrees=self.hyp['degrees'],
  593. translate=self.hyp['translate'],
  594. scale=self.hyp['scale'],
  595. shear=self.hyp['shear'],
  596. perspective=self.hyp['perspective'],
  597. border=self.mosaic_border) # border to remove
  598. return img4, labels4
  599. def load_mosaic9(self, index):
  600. # loads images in a 9-mosaic
  601. labels9, segments9 = [], []
  602. s = self.img_size
  603. indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
  604. for i, index in enumerate(indices):
  605. # Load image
  606. img, _, (h, w) = load_image(self, index)
  607. # place img in img9
  608. if i == 0: # center
  609. img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  610. h0, w0 = h, w
  611. c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
  612. elif i == 1: # top
  613. c = s, s - h, s + w, s
  614. elif i == 2: # top right
  615. c = s + wp, s - h, s + wp + w, s
  616. elif i == 3: # right
  617. c = s + w0, s, s + w0 + w, s + h
  618. elif i == 4: # bottom right
  619. c = s + w0, s + hp, s + w0 + w, s + hp + h
  620. elif i == 5: # bottom
  621. c = s + w0 - w, s + h0, s + w0, s + h0 + h
  622. elif i == 6: # bottom left
  623. c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
  624. elif i == 7: # left
  625. c = s - w, s + h0 - h, s, s + h0
  626. elif i == 8: # top left
  627. c = s - w, s + h0 - hp - h, s, s + h0 - hp
  628. padx, pady = c[:2]
  629. x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
  630. # Labels
  631. labels, segments = self.labels[index].copy(), self.segments[index].copy()
  632. if labels.size:
  633. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
  634. segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
  635. labels9.append(labels)
  636. segments9.extend(segments)
  637. # Image
  638. img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
  639. hp, wp = h, w # height, width previous
  640. # Offset
  641. yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
  642. img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
  643. # Concat/clip labels
  644. labels9 = np.concatenate(labels9, 0)
  645. labels9[:, [1, 3]] -= xc
  646. labels9[:, [2, 4]] -= yc
  647. c = np.array([xc, yc]) # centers
  648. segments9 = [x - c for x in segments9]
  649. for x in (labels9[:, 1:], *segments9):
  650. np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
  651. # img9, labels9 = replicate(img9, labels9) # replicate
  652. # Augment
  653. img9, labels9 = random_perspective(img9, labels9, segments9,
  654. degrees=self.hyp['degrees'],
  655. translate=self.hyp['translate'],
  656. scale=self.hyp['scale'],
  657. shear=self.hyp['shear'],
  658. perspective=self.hyp['perspective'],
  659. border=self.mosaic_border) # border to remove
  660. return img9, labels9
  661. def replicate(img, labels):
  662. # Replicate labels
  663. h, w = img.shape[:2]
  664. boxes = labels[:, 1:].astype(int)
  665. x1, y1, x2, y2 = boxes.T
  666. s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
  667. for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
  668. x1b, y1b, x2b, y2b = boxes[i]
  669. bh, bw = y2b - y1b, x2b - x1b
  670. yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
  671. x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
  672. img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  673. labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
  674. return img, labels
  675. def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
  676. # Resize and pad image while meeting stride-multiple constraints
  677. shape = img.shape[:2] # current shape [height, width]
  678. if isinstance(new_shape, int):
  679. new_shape = (new_shape, new_shape)
  680. # Scale ratio (new / old)
  681. r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
  682. if not scaleup: # only scale down, do not scale up (for better test mAP)
  683. r = min(r, 1.0)
  684. # Compute padding
  685. ratio = r, r # width, height ratios
  686. new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
  687. dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
  688. if auto: # minimum rectangle
  689. dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
  690. elif scaleFill: # stretch
  691. dw, dh = 0.0, 0.0
  692. new_unpad = (new_shape[1], new_shape[0])
  693. ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
  694. dw /= 2 # divide padding into 2 sides
  695. dh /= 2
  696. if shape[::-1] != new_unpad: # resize
  697. img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
  698. top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
  699. left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
  700. img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
  701. return img, ratio, (dw, dh)
  702. def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
  703. border=(0, 0)):
  704. # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
  705. # targets = [cls, xyxy]
  706. height = img.shape[0] + border[0] * 2 # shape(h,w,c)
  707. width = img.shape[1] + border[1] * 2
  708. # Center
  709. C = np.eye(3)
  710. C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
  711. C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
  712. # Perspective
  713. P = np.eye(3)
  714. P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
  715. P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
  716. # Rotation and Scale
  717. R = np.eye(3)
  718. a = random.uniform(-degrees, degrees)
  719. # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
  720. s = random.uniform(1 - scale, 1 + scale)
  721. # s = 2 ** random.uniform(-scale, scale)
  722. R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
  723. # Shear
  724. S = np.eye(3)
  725. S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
  726. S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
  727. # Translation
  728. T = np.eye(3)
  729. T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
  730. T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
  731. # Combined rotation matrix
  732. M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
  733. if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
  734. if perspective:
  735. img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
  736. else: # affine
  737. img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
  738. # Visualize
  739. # import matplotlib.pyplot as plt
  740. # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
  741. # ax[0].imshow(img[:, :, ::-1]) # base
  742. # ax[1].imshow(img2[:, :, ::-1]) # warped
  743. # Transform label coordinates
  744. n = len(targets)
  745. if n:
  746. use_segments = any(x.any() for x in segments)
  747. new = np.zeros((n, 4))
  748. if use_segments: # warp segments
  749. segments = resample_segments(segments) # upsample
  750. for i, segment in enumerate(segments):
  751. xy = np.ones((len(segment), 3))
  752. xy[:, :2] = segment
  753. xy = xy @ M.T # transform
  754. xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
  755. # clip
  756. new[i] = segment2box(xy, width, height)
  757. else: # warp boxes
  758. xy = np.ones((n * 4, 3))
  759. xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
  760. xy = xy @ M.T # transform
  761. xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
  762. # create new boxes
  763. x = xy[:, [0, 2, 4, 6]]
  764. y = xy[:, [1, 3, 5, 7]]
  765. new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
  766. # clip
  767. new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
  768. new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
  769. # filter candidates
  770. i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
  771. targets = targets[i]
  772. targets[:, 1:5] = new[i]
  773. return img, targets
  774. def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
  775. # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
  776. w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
  777. w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
  778. ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
  779. return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
  780. def cutout(image, labels):
  781. # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
  782. h, w = image.shape[:2]
  783. def bbox_ioa(box1, box2):
  784. # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
  785. box2 = box2.transpose()
  786. # Get the coordinates of bounding boxes
  787. b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
  788. b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
  789. # Intersection area
  790. inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
  791. (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
  792. # box2 area
  793. box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
  794. # Intersection over box2 area
  795. return inter_area / box2_area
  796. # create random masks
  797. scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
  798. for s in scales:
  799. mask_h = random.randint(1, int(h * s))
  800. mask_w = random.randint(1, int(w * s))
  801. # box
  802. xmin = max(0, random.randint(0, w) - mask_w // 2)
  803. ymin = max(0, random.randint(0, h) - mask_h // 2)
  804. xmax = min(w, xmin + mask_w)
  805. ymax = min(h, ymin + mask_h)
  806. # apply random color mask
  807. image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
  808. # return unobscured labels
  809. if len(labels) and s > 0.03:
  810. box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
  811. ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
  812. labels = labels[ioa < 0.60] # remove >60% obscured labels
  813. return labels
  814. def create_folder(path='./new'):
  815. # Create folder
  816. if os.path.exists(path):
  817. shutil.rmtree(path) # delete output folder
  818. os.makedirs(path) # make new output folder
  819. def flatten_recursive(path='../coco128'):
  820. # Flatten a recursive directory by bringing all files to top level
  821. new_path = Path(path + '_flat')
  822. create_folder(new_path)
  823. for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
  824. shutil.copyfile(file, new_path / Path(file).name)
  825. def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
  826. # Convert detection dataset into classification dataset, with one directory per class
  827. path = Path(path) # images dir
  828. shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
  829. files = list(path.rglob('*.*'))
  830. n = len(files) # number of files
  831. for im_file in tqdm(files, total=n):
  832. if im_file.suffix[1:] in img_formats:
  833. # image
  834. im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
  835. h, w = im.shape[:2]
  836. # labels
  837. lb_file = Path(img2label_paths([str(im_file)])[0])
  838. if Path(lb_file).exists():
  839. with open(lb_file, 'r') as f:
  840. lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  841. for j, x in enumerate(lb):
  842. c = int(x[0]) # class
  843. f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
  844. if not f.parent.is_dir():
  845. f.parent.mkdir(parents=True)
  846. b = x[1:] * [w, h, w, h] # box
  847. # b[2:] = b[2:].max() # rectangle to square
  848. b[2:] = b[2:] * 1.2 + 3 # pad
  849. b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
  850. b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
  851. b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
  852. assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
  853. def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0), annotated_only=False):
  854. """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
  855. Usage: from utils.datasets import *; autosplit('../coco128')
  856. Arguments
  857. path: Path to images directory
  858. weights: Train, val, test weights (list)
  859. annotated_only: Only use images with an annotated txt file
  860. """
  861. path = Path(path) # images dir
  862. files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only
  863. n = len(files) # number of files
  864. indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
  865. txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
  866. [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
  867. print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
  868. for i, img in tqdm(zip(indices, files), total=n):
  869. if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
  870. with open(path / txt[i], 'a') as f:
  871. f.write(str(img) + '\n') # add image to txt file