You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

448 lines
18KB

  1. # Plotting utils
  2. import glob
  3. import math
  4. import os
  5. import random
  6. from copy import copy
  7. from pathlib import Path
  8. import cv2
  9. import matplotlib
  10. import matplotlib.pyplot as plt
  11. import numpy as np
  12. import pandas as pd
  13. import seaborn as sns
  14. import torch
  15. import yaml
  16. from PIL import Image, ImageDraw, ImageFont
  17. from utils.general import xywh2xyxy, xyxy2xywh
  18. from utils.metrics import fitness
  19. # Settings
  20. matplotlib.rc('font', **{'size': 11})
  21. matplotlib.use('Agg') # for writing to files only
  22. class Colors:
  23. # Ultralytics color palette https://ultralytics.com/
  24. def __init__(self):
  25. # hex = matplotlib.colors.TABLEAU_COLORS.values()
  26. hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
  27. '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
  28. self.palette = [self.hex2rgb('#' + c) for c in hex]
  29. self.n = len(self.palette)
  30. def __call__(self, i, bgr=False):
  31. c = self.palette[int(i) % self.n]
  32. return (c[2], c[1], c[0]) if bgr else c
  33. @staticmethod
  34. def hex2rgb(h): # rgb order (PIL)
  35. return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
  36. colors = Colors() # create instance for 'from utils.plots import colors'
  37. def hist2d(x, y, n=100):
  38. # 2d histogram used in labels.png and evolve.png
  39. xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
  40. hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
  41. xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
  42. yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
  43. return np.log(hist[xidx, yidx])
  44. def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
  45. from scipy.signal import butter, filtfilt
  46. # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
  47. def butter_lowpass(cutoff, fs, order):
  48. nyq = 0.5 * fs
  49. normal_cutoff = cutoff / nyq
  50. return butter(order, normal_cutoff, btype='low', analog=False)
  51. b, a = butter_lowpass(cutoff, fs, order=order)
  52. return filtfilt(b, a, data) # forward-backward filter
  53. def plot_one_box(x, im, color=None, label=None, line_thickness=3):
  54. # Plots one bounding box on image 'im' using OpenCV
  55. assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
  56. tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1 # line/font thickness
  57. color = color or [random.randint(0, 255) for _ in range(3)]
  58. c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
  59. cv2.rectangle(im, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
  60. if label:
  61. tf = max(tl - 1, 1) # font thickness
  62. t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
  63. c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
  64. cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA) # filled
  65. cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
  66. def plot_one_box_PIL(box, im, color=None, label=None, line_thickness=None):
  67. # Plots one bounding box on image 'im' using PIL
  68. im = Image.fromarray(im)
  69. draw = ImageDraw.Draw(im)
  70. line_thickness = line_thickness or max(int(min(im.size) / 200), 2)
  71. draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
  72. if label:
  73. fontsize = max(round(max(im.size) / 40), 12)
  74. font = ImageFont.truetype("Arial.ttf", fontsize)
  75. txt_width, txt_height = font.getsize(label)
  76. draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
  77. draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
  78. return np.asarray(im)
  79. def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
  80. # Compares the two methods for width-height anchor multiplication
  81. # https://github.com/ultralytics/yolov3/issues/168
  82. x = np.arange(-4.0, 4.0, .1)
  83. ya = np.exp(x)
  84. yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
  85. fig = plt.figure(figsize=(6, 3), tight_layout=True)
  86. plt.plot(x, ya, '.-', label='YOLOv3')
  87. plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
  88. plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
  89. plt.xlim(left=-4, right=4)
  90. plt.ylim(bottom=0, top=6)
  91. plt.xlabel('input')
  92. plt.ylabel('output')
  93. plt.grid()
  94. plt.legend()
  95. fig.savefig('comparison.png', dpi=200)
  96. def output_to_target(output):
  97. # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
  98. targets = []
  99. for i, o in enumerate(output):
  100. for *box, conf, cls in o.cpu().numpy():
  101. targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
  102. return np.array(targets)
  103. def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
  104. # Plot image grid with labels
  105. if isinstance(images, torch.Tensor):
  106. images = images.cpu().float().numpy()
  107. if isinstance(targets, torch.Tensor):
  108. targets = targets.cpu().numpy()
  109. # un-normalise
  110. if np.max(images[0]) <= 1:
  111. images *= 255
  112. tl = 3 # line thickness
  113. tf = max(tl - 1, 1) # font thickness
  114. bs, _, h, w = images.shape # batch size, _, height, width
  115. bs = min(bs, max_subplots) # limit plot images
  116. ns = np.ceil(bs ** 0.5) # number of subplots (square)
  117. # Check if we should resize
  118. scale_factor = max_size / max(h, w)
  119. if scale_factor < 1:
  120. h = math.ceil(scale_factor * h)
  121. w = math.ceil(scale_factor * w)
  122. mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
  123. for i, img in enumerate(images):
  124. if i == max_subplots: # if last batch has fewer images than we expect
  125. break
  126. block_x = int(w * (i // ns))
  127. block_y = int(h * (i % ns))
  128. img = img.transpose(1, 2, 0)
  129. if scale_factor < 1:
  130. img = cv2.resize(img, (w, h))
  131. mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
  132. if len(targets) > 0:
  133. image_targets = targets[targets[:, 0] == i]
  134. boxes = xywh2xyxy(image_targets[:, 2:6]).T
  135. classes = image_targets[:, 1].astype('int')
  136. labels = image_targets.shape[1] == 6 # labels if no conf column
  137. conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
  138. if boxes.shape[1]:
  139. if boxes.max() <= 1.01: # if normalized with tolerance 0.01
  140. boxes[[0, 2]] *= w # scale to pixels
  141. boxes[[1, 3]] *= h
  142. elif scale_factor < 1: # absolute coords need scale if image scales
  143. boxes *= scale_factor
  144. boxes[[0, 2]] += block_x
  145. boxes[[1, 3]] += block_y
  146. for j, box in enumerate(boxes.T):
  147. cls = int(classes[j])
  148. color = colors(cls)
  149. cls = names[cls] if names else cls
  150. if labels or conf[j] > 0.25: # 0.25 conf thresh
  151. label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
  152. plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
  153. # Draw image filename labels
  154. if paths:
  155. label = Path(paths[i]).name[:40] # trim to 40 char
  156. t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
  157. cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
  158. lineType=cv2.LINE_AA)
  159. # Image border
  160. cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
  161. if fname:
  162. r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
  163. mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
  164. # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
  165. Image.fromarray(mosaic).save(fname) # PIL save
  166. return mosaic
  167. def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
  168. # Plot LR simulating training for full epochs
  169. optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
  170. y = []
  171. for _ in range(epochs):
  172. scheduler.step()
  173. y.append(optimizer.param_groups[0]['lr'])
  174. plt.plot(y, '.-', label='LR')
  175. plt.xlabel('epoch')
  176. plt.ylabel('LR')
  177. plt.grid()
  178. plt.xlim(0, epochs)
  179. plt.ylim(0)
  180. plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
  181. plt.close()
  182. def plot_test_txt(): # from utils.plots import *; plot_test()
  183. # Plot test.txt histograms
  184. x = np.loadtxt('test.txt', dtype=np.float32)
  185. box = xyxy2xywh(x[:, :4])
  186. cx, cy = box[:, 0], box[:, 1]
  187. fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
  188. ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
  189. ax.set_aspect('equal')
  190. plt.savefig('hist2d.png', dpi=300)
  191. fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
  192. ax[0].hist(cx, bins=600)
  193. ax[1].hist(cy, bins=600)
  194. plt.savefig('hist1d.png', dpi=200)
  195. def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
  196. # Plot targets.txt histograms
  197. x = np.loadtxt('targets.txt', dtype=np.float32).T
  198. s = ['x targets', 'y targets', 'width targets', 'height targets']
  199. fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
  200. ax = ax.ravel()
  201. for i in range(4):
  202. ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
  203. ax[i].legend()
  204. ax[i].set_title(s[i])
  205. plt.savefig('targets.jpg', dpi=200)
  206. def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
  207. # Plot study.txt generated by test.py
  208. fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
  209. # ax = ax.ravel()
  210. fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
  211. # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
  212. for f in sorted(Path(path).glob('study*.txt')):
  213. y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
  214. x = np.arange(y.shape[1]) if x is None else np.array(x)
  215. s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
  216. # for i in range(7):
  217. # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
  218. # ax[i].set_title(s[i])
  219. j = y[3].argmax() + 1
  220. ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
  221. label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
  222. ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
  223. 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
  224. ax2.grid(alpha=0.2)
  225. ax2.set_yticks(np.arange(20, 60, 5))
  226. ax2.set_xlim(0, 57)
  227. ax2.set_ylim(30, 55)
  228. ax2.set_xlabel('GPU Speed (ms/img)')
  229. ax2.set_ylabel('COCO AP val')
  230. ax2.legend(loc='lower right')
  231. plt.savefig(str(Path(path).name) + '.png', dpi=300)
  232. def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
  233. # plot dataset labels
  234. print('Plotting labels... ')
  235. c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
  236. nc = int(c.max() + 1) # number of classes
  237. x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
  238. # seaborn correlogram
  239. sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
  240. plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
  241. plt.close()
  242. # matplotlib labels
  243. matplotlib.use('svg') # faster
  244. ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
  245. ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
  246. ax[0].set_ylabel('instances')
  247. if 0 < len(names) < 30:
  248. ax[0].set_xticks(range(len(names)))
  249. ax[0].set_xticklabels(names, rotation=90, fontsize=10)
  250. else:
  251. ax[0].set_xlabel('classes')
  252. sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
  253. sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
  254. # rectangles
  255. labels[:, 1:3] = 0.5 # center
  256. labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
  257. img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
  258. for cls, *box in labels[:1000]:
  259. ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
  260. ax[1].imshow(img)
  261. ax[1].axis('off')
  262. for a in [0, 1, 2, 3]:
  263. for s in ['top', 'right', 'left', 'bottom']:
  264. ax[a].spines[s].set_visible(False)
  265. plt.savefig(save_dir / 'labels.jpg', dpi=200)
  266. matplotlib.use('Agg')
  267. plt.close()
  268. # loggers
  269. for k, v in loggers.items() or {}:
  270. if k == 'wandb' and v:
  271. v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
  272. def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
  273. # Plot hyperparameter evolution results in evolve.txt
  274. with open(yaml_file) as f:
  275. hyp = yaml.safe_load(f)
  276. x = np.loadtxt('evolve.txt', ndmin=2)
  277. f = fitness(x)
  278. # weights = (f - f.min()) ** 2 # for weighted results
  279. plt.figure(figsize=(10, 12), tight_layout=True)
  280. matplotlib.rc('font', **{'size': 8})
  281. for i, (k, v) in enumerate(hyp.items()):
  282. y = x[:, i + 7]
  283. # mu = (y * weights).sum() / weights.sum() # best weighted result
  284. mu = y[f.argmax()] # best single result
  285. plt.subplot(6, 5, i + 1)
  286. plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
  287. plt.plot(mu, f.max(), 'k+', markersize=15)
  288. plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
  289. if i % 5 != 0:
  290. plt.yticks([])
  291. print('%15s: %.3g' % (k, mu))
  292. plt.savefig('evolve.png', dpi=200)
  293. print('\nPlot saved as evolve.png')
  294. def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
  295. # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
  296. ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
  297. s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
  298. files = list(Path(save_dir).glob('frames*.txt'))
  299. for fi, f in enumerate(files):
  300. try:
  301. results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
  302. n = results.shape[1] # number of rows
  303. x = np.arange(start, min(stop, n) if stop else n)
  304. results = results[:, x]
  305. t = (results[0] - results[0].min()) # set t0=0s
  306. results[0] = x
  307. for i, a in enumerate(ax):
  308. if i < len(results):
  309. label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
  310. a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
  311. a.set_title(s[i])
  312. a.set_xlabel('time (s)')
  313. # if fi == len(files) - 1:
  314. # a.set_ylim(bottom=0)
  315. for side in ['top', 'right']:
  316. a.spines[side].set_visible(False)
  317. else:
  318. a.remove()
  319. except Exception as e:
  320. print('Warning: Plotting error for %s; %s' % (f, e))
  321. ax[1].legend()
  322. plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
  323. def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
  324. # Plot training 'results*.txt', overlaying train and val losses
  325. s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
  326. t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
  327. for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
  328. results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
  329. n = results.shape[1] # number of rows
  330. x = range(start, min(stop, n) if stop else n)
  331. fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
  332. ax = ax.ravel()
  333. for i in range(5):
  334. for j in [i, i + 5]:
  335. y = results[j, x]
  336. ax[i].plot(x, y, marker='.', label=s[j])
  337. # y_smooth = butter_lowpass_filtfilt(y)
  338. # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
  339. ax[i].set_title(t[i])
  340. ax[i].legend()
  341. ax[i].set_ylabel(f) if i == 0 else None # add filename
  342. fig.savefig(f.replace('.txt', '.png'), dpi=200)
  343. def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
  344. # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
  345. fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
  346. ax = ax.ravel()
  347. s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
  348. 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
  349. if bucket:
  350. # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
  351. files = ['results%g.txt' % x for x in id]
  352. c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
  353. os.system(c)
  354. else:
  355. files = list(Path(save_dir).glob('results*.txt'))
  356. assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
  357. for fi, f in enumerate(files):
  358. try:
  359. results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
  360. n = results.shape[1] # number of rows
  361. x = range(start, min(stop, n) if stop else n)
  362. for i in range(10):
  363. y = results[i, x]
  364. if i in [0, 1, 2, 5, 6, 7]:
  365. y[y == 0] = np.nan # don't show zero loss values
  366. # y /= y[0] # normalize
  367. label = labels[fi] if len(labels) else f.stem
  368. ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
  369. ax[i].set_title(s[i])
  370. # if i in [5, 6, 7]: # share train and val loss y axes
  371. # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
  372. except Exception as e:
  373. print('Warning: Plotting error for %s; %s' % (f, e))
  374. ax[1].legend()
  375. fig.savefig(Path(save_dir) / 'results.png', dpi=200)