|
- # This file contains modules common to various models
-
- import math
- import numpy as np
- import torch
- import torch.nn as nn
-
- from utils.datasets import letterbox
- from utils.general import non_max_suppression, make_divisible, scale_coords
-
-
- def autopad(k, p=None): # kernel, padding
- # Pad to 'same'
- if p is None:
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
- return p
-
-
- def DWConv(c1, c2, k=1, s=1, act=True):
- # Depthwise convolution
- return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
-
-
- class Conv(nn.Module):
- # Standard convolution
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super(Conv, self).__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.Hardswish() if act else nn.Identity()
-
- def forward(self, x):
- return self.act(self.bn(self.conv(x)))
-
- def fuseforward(self, x):
- return self.act(self.conv(x))
-
-
- class Bottleneck(nn.Module):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
- super(Bottleneck, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
- self.add = shortcut and c1 == c2
-
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
-
- class BottleneckCSP(nn.Module):
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super(BottleneckCSP, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
- self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
- self.cv4 = Conv(2 * c_, c2, 1, 1)
- self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
- self.act = nn.LeakyReLU(0.1, inplace=True)
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
-
- def forward(self, x):
- y1 = self.cv3(self.m(self.cv1(x)))
- y2 = self.cv2(x)
- return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
-
-
- class SPP(nn.Module):
- # Spatial pyramid pooling layer used in YOLOv3-SPP
- def __init__(self, c1, c2, k=(5, 9, 13)):
- super(SPP, self).__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
-
- def forward(self, x):
- x = self.cv1(x)
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
-
-
- class Focus(nn.Module):
- # Focus wh information into c-space
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super(Focus, self).__init__()
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
-
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
- return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
-
-
- class Concat(nn.Module):
- # Concatenate a list of tensors along dimension
- def __init__(self, dimension=1):
- super(Concat, self).__init__()
- self.d = dimension
-
- def forward(self, x):
- return torch.cat(x, self.d)
-
-
- class NMS(nn.Module):
- # Non-Maximum Suppression (NMS) module
- conf = 0.25 # confidence threshold
- iou = 0.45 # IoU threshold
- classes = None # (optional list) filter by class
-
- def __init__(self):
- super(NMS, self).__init__()
-
- def forward(self, x):
- return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
-
-
- class autoShape(nn.Module):
- # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
- img_size = 640 # inference size (pixels)
- conf = 0.25 # NMS confidence threshold
- iou = 0.45 # NMS IoU threshold
- classes = None # (optional list) filter by class
-
- def __init__(self, model):
- super(autoShape, self).__init__()
- self.model = model
-
- def forward(self, x, size=640, augment=False, profile=False):
- # supports inference from various sources. For height=720, width=1280, RGB images example inputs are:
- # opencv: x = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
- # PIL: x = Image.open('image.jpg') # HWC x(720,1280,3)
- # numpy: x = np.zeros((720,1280,3)) # HWC
- # torch: x = torch.zeros(16,3,720,1280) # BCHW
- # multiple: x = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
-
- p = next(self.model.parameters()) # for device and type
- if isinstance(x, torch.Tensor): # torch
- return self.model(x.to(p.device).type_as(p), augment, profile) # inference
-
- # Pre-process
- if not isinstance(x, list):
- x = [x]
- shape0, shape1 = [], [] # image and inference shapes
- batch = range(len(x)) # batch size
- for i in batch:
- x[i] = np.array(x[i])[:, :, :3] # up to 3 channels if png
- s = x[i].shape[:2] # HWC
- shape0.append(s) # image shape
- g = (size / max(s)) # gain
- shape1.append([y * g for y in s])
- shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
- x = [letterbox(x[i], new_shape=shape1, auto=False)[0] for i in batch] # pad
- x = np.stack(x, 0) if batch[-1] else x[0][None] # stack
- x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
- x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
-
- # Inference
- x = self.model(x, augment, profile) # forward
- x = non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
-
- # Post-process
- for i in batch:
- if x[i] is not None:
- x[i][:, :4] = scale_coords(shape1, x[i][:, :4], shape0[i])
- return x
-
-
- class Flatten(nn.Module):
- # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
- @staticmethod
- def forward(x):
- return x.view(x.size(0), -1)
-
-
- class Classify(nn.Module):
- # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
- super(Classify, self).__init__()
- self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) # to x(b,c2,1,1)
- self.flat = Flatten()
-
- def forward(self, x):
- z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
- return self.flat(self.conv(z)) # flatten to x(b,c2)
|