選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

193 行
7.8KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Export a PyTorch model to TorchScript, ONNX, CoreML formats
  4. Usage:
  5. $ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1
  6. """
  7. import argparse
  8. import sys
  9. import time
  10. from pathlib import Path
  11. import torch
  12. import torch.nn as nn
  13. from torch.utils.mobile_optimizer import optimize_for_mobile
  14. FILE = Path(__file__).absolute()
  15. sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
  16. from models.common import Conv
  17. from models.yolo import Detect
  18. from models.experimental import attempt_load
  19. from utils.activations import Hardswish, SiLU
  20. from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
  21. from utils.torch_utils import select_device
  22. def export_torchscript(model, img, file, optimize):
  23. # TorchScript model export
  24. prefix = colorstr('TorchScript:')
  25. try:
  26. print(f'\n{prefix} starting export with torch {torch.__version__}...')
  27. f = file.with_suffix('.torchscript.pt')
  28. ts = torch.jit.trace(model, img, strict=False)
  29. (optimize_for_mobile(ts) if optimize else ts).save(f)
  30. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  31. return ts
  32. except Exception as e:
  33. print(f'{prefix} export failure: {e}')
  34. def export_onnx(model, img, file, opset, train, dynamic, simplify):
  35. # ONNX model export
  36. prefix = colorstr('ONNX:')
  37. try:
  38. check_requirements(('onnx', 'onnx-simplifier'))
  39. import onnx
  40. print(f'\n{prefix} starting export with onnx {onnx.__version__}...')
  41. f = file.with_suffix('.onnx')
  42. torch.onnx.export(model, img, f, verbose=False, opset_version=opset,
  43. training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
  44. do_constant_folding=not train,
  45. input_names=['images'],
  46. output_names=['output'],
  47. dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
  48. 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
  49. } if dynamic else None)
  50. # Checks
  51. model_onnx = onnx.load(f) # load onnx model
  52. onnx.checker.check_model(model_onnx) # check onnx model
  53. # print(onnx.helper.printable_graph(model_onnx.graph)) # print
  54. # Simplify
  55. if simplify:
  56. try:
  57. import onnxsim
  58. print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
  59. model_onnx, check = onnxsim.simplify(
  60. model_onnx,
  61. dynamic_input_shape=dynamic,
  62. input_shapes={'images': list(img.shape)} if dynamic else None)
  63. assert check, 'assert check failed'
  64. onnx.save(model_onnx, f)
  65. except Exception as e:
  66. print(f'{prefix} simplifier failure: {e}')
  67. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  68. print(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
  69. except Exception as e:
  70. print(f'{prefix} export failure: {e}')
  71. def export_coreml(model, img, file):
  72. # CoreML model export
  73. prefix = colorstr('CoreML:')
  74. try:
  75. check_requirements(('coremltools',))
  76. import coremltools as ct
  77. print(f'\n{prefix} starting export with coremltools {ct.__version__}...')
  78. f = file.with_suffix('.mlmodel')
  79. model.train() # CoreML exports should be placed in model.train() mode
  80. ts = torch.jit.trace(model, img, strict=False) # TorchScript model
  81. model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
  82. model.save(f)
  83. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  84. except Exception as e:
  85. print(f'\n{prefix} export failure: {e}')
  86. def run(weights='./yolov5s.pt', # weights path
  87. img_size=(640, 640), # image (height, width)
  88. batch_size=1, # batch size
  89. device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  90. include=('torchscript', 'onnx', 'coreml'), # include formats
  91. half=False, # FP16 half-precision export
  92. inplace=False, # set YOLOv5 Detect() inplace=True
  93. train=False, # model.train() mode
  94. optimize=False, # TorchScript: optimize for mobile
  95. dynamic=False, # ONNX: dynamic axes
  96. simplify=False, # ONNX: simplify model
  97. opset=12, # ONNX: opset version
  98. ):
  99. t = time.time()
  100. include = [x.lower() for x in include]
  101. img_size *= 2 if len(img_size) == 1 else 1 # expand
  102. file = Path(weights)
  103. # Load PyTorch model
  104. device = select_device(device)
  105. assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
  106. model = attempt_load(weights, map_location=device) # load FP32 model
  107. names = model.names
  108. # Input
  109. gs = int(max(model.stride)) # grid size (max stride)
  110. img_size = [check_img_size(x, gs) for x in img_size] # verify img_size are gs-multiples
  111. img = torch.zeros(batch_size, 3, *img_size).to(device) # image size(1,3,320,192) iDetection
  112. # Update model
  113. if half:
  114. img, model = img.half(), model.half() # to FP16
  115. model.train() if train else model.eval() # training mode = no Detect() layer grid construction
  116. for k, m in model.named_modules():
  117. if isinstance(m, Conv): # assign export-friendly activations
  118. if isinstance(m.act, nn.Hardswish):
  119. m.act = Hardswish()
  120. elif isinstance(m.act, nn.SiLU):
  121. m.act = SiLU()
  122. elif isinstance(m, Detect):
  123. m.inplace = inplace
  124. m.onnx_dynamic = dynamic
  125. # m.forward = m.forward_export # assign forward (optional)
  126. for _ in range(2):
  127. y = model(img) # dry runs
  128. print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
  129. # Exports
  130. if 'torchscript' in include:
  131. export_torchscript(model, img, file, optimize)
  132. if 'onnx' in include:
  133. export_onnx(model, img, file, opset, train, dynamic, simplify)
  134. if 'coreml' in include:
  135. export_coreml(model, img, file)
  136. # Finish
  137. print(f'\nExport complete ({time.time() - t:.2f}s)'
  138. f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
  139. f'\nVisualize with https://netron.app')
  140. def parse_opt():
  141. parser = argparse.ArgumentParser()
  142. parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
  143. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)')
  144. parser.add_argument('--batch-size', type=int, default=1, help='batch size')
  145. parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  146. parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
  147. parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
  148. parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
  149. parser.add_argument('--train', action='store_true', help='model.train() mode')
  150. parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
  151. parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes')
  152. parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
  153. parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
  154. opt = parser.parse_args()
  155. return opt
  156. def main(opt):
  157. set_logging()
  158. print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  159. run(**vars(opt))
  160. if __name__ == "__main__":
  161. opt = parse_opt()
  162. main(opt)