Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

584 rindas
30KB

  1. """Train a YOLOv5 model on a custom dataset
  2. Usage:
  3. $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
  4. """
  5. import argparse
  6. import logging
  7. import os
  8. import random
  9. import sys
  10. import time
  11. from copy import deepcopy
  12. from pathlib import Path
  13. import math
  14. import numpy as np
  15. import torch
  16. import torch.distributed as dist
  17. import torch.nn as nn
  18. import yaml
  19. from torch.cuda import amp
  20. from torch.nn.parallel import DistributedDataParallel as DDP
  21. from torch.optim import Adam, SGD, lr_scheduler
  22. from tqdm import tqdm
  23. FILE = Path(__file__).absolute()
  24. sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
  25. import val # for end-of-epoch mAP
  26. from models.experimental import attempt_load
  27. from models.yolo import Model
  28. from utils.autoanchor import check_anchors
  29. from utils.datasets import create_dataloader
  30. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  31. strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  32. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  33. from utils.downloads import attempt_download
  34. from utils.loss import ComputeLoss
  35. from utils.plots import plot_labels, plot_evolution
  36. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
  37. from utils.loggers.wandb.wandb_utils import check_wandb_resume
  38. from utils.metrics import fitness
  39. from utils.loggers import Loggers
  40. LOGGER = logging.getLogger(__name__)
  41. LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
  42. RANK = int(os.getenv('RANK', -1))
  43. WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
  44. def train(hyp, # path/to/hyp.yaml or hyp dictionary
  45. opt,
  46. device,
  47. ):
  48. save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = \
  49. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
  50. opt.resume, opt.noval, opt.nosave, opt.workers
  51. # Directories
  52. w = save_dir / 'weights' # weights dir
  53. w.mkdir(parents=True, exist_ok=True) # make dir
  54. last, best = w / 'last.pt', w / 'best.pt'
  55. # Hyperparameters
  56. if isinstance(hyp, str):
  57. with open(hyp) as f:
  58. hyp = yaml.safe_load(f) # load hyps dict
  59. LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  60. # Save run settings
  61. with open(save_dir / 'hyp.yaml', 'w') as f:
  62. yaml.safe_dump(hyp, f, sort_keys=False)
  63. with open(save_dir / 'opt.yaml', 'w') as f:
  64. yaml.safe_dump(vars(opt), f, sort_keys=False)
  65. # Config
  66. plots = not evolve # create plots
  67. cuda = device.type != 'cpu'
  68. init_seeds(1 + RANK)
  69. with torch_distributed_zero_first(RANK):
  70. data_dict = check_dataset(data) # check
  71. train_path, val_path = data_dict['train'], data_dict['val']
  72. nc = 1 if single_cls else int(data_dict['nc']) # number of classes
  73. names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  74. assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
  75. is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
  76. # Loggers
  77. if RANK in [-1, 0]:
  78. loggers = Loggers(save_dir, weights, opt, hyp, data_dict, LOGGER).start() # loggers dict
  79. if loggers.wandb and resume:
  80. weights, epochs, hyp, data_dict = opt.weights, opt.epochs, opt.hyp, loggers.wandb.data_dict
  81. # Model
  82. pretrained = weights.endswith('.pt')
  83. if pretrained:
  84. with torch_distributed_zero_first(RANK):
  85. weights = attempt_download(weights) # download if not found locally
  86. ckpt = torch.load(weights, map_location=device) # load checkpoint
  87. model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  88. exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
  89. csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
  90. csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
  91. model.load_state_dict(csd, strict=False) # load
  92. LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
  93. else:
  94. model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  95. # Freeze
  96. freeze = [] # parameter names to freeze (full or partial)
  97. for k, v in model.named_parameters():
  98. v.requires_grad = True # train all layers
  99. if any(x in k for x in freeze):
  100. print(f'freezing {k}')
  101. v.requires_grad = False
  102. # Optimizer
  103. nbs = 64 # nominal batch size
  104. accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
  105. hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
  106. LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  107. g0, g1, g2 = [], [], [] # optimizer parameter groups
  108. for v in model.modules():
  109. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
  110. g2.append(v.bias)
  111. if isinstance(v, nn.BatchNorm2d): # weight with decay
  112. g0.append(v.weight)
  113. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight without decay
  114. g1.append(v.weight)
  115. if opt.adam:
  116. optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  117. else:
  118. optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  119. optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
  120. optimizer.add_param_group({'params': g2}) # add g2 (biases)
  121. LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
  122. f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
  123. del g0, g1, g2
  124. # Scheduler
  125. if opt.linear_lr:
  126. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  127. else:
  128. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  129. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
  130. # EMA
  131. ema = ModelEMA(model) if RANK in [-1, 0] else None
  132. # Resume
  133. start_epoch, best_fitness = 0, 0.0
  134. if pretrained:
  135. # Optimizer
  136. if ckpt['optimizer'] is not None:
  137. optimizer.load_state_dict(ckpt['optimizer'])
  138. best_fitness = ckpt['best_fitness']
  139. # EMA
  140. if ema and ckpt.get('ema'):
  141. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  142. ema.updates = ckpt['updates']
  143. # Epochs
  144. start_epoch = ckpt['epoch'] + 1
  145. if resume:
  146. assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
  147. if epochs < start_epoch:
  148. LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
  149. epochs += ckpt['epoch'] # finetune additional epochs
  150. del ckpt, csd
  151. # Image sizes
  152. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  153. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  154. imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
  155. # DP mode
  156. if cuda and RANK == -1 and torch.cuda.device_count() > 1:
  157. logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
  158. 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
  159. model = torch.nn.DataParallel(model)
  160. # SyncBatchNorm
  161. if opt.sync_bn and cuda and RANK != -1:
  162. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  163. LOGGER.info('Using SyncBatchNorm()')
  164. # Trainloader
  165. train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
  166. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK,
  167. workers=workers, image_weights=opt.image_weights, quad=opt.quad,
  168. prefix=colorstr('train: '))
  169. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  170. nb = len(train_loader) # number of batches
  171. assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
  172. # Process 0
  173. if RANK in [-1, 0]:
  174. val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
  175. hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1,
  176. workers=workers, pad=0.5,
  177. prefix=colorstr('val: '))[0]
  178. if not resume:
  179. labels = np.concatenate(dataset.labels, 0)
  180. # c = torch.tensor(labels[:, 0]) # classes
  181. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  182. # model._initialize_biases(cf.to(device))
  183. if plots:
  184. plot_labels(labels, names, save_dir, loggers)
  185. # Anchors
  186. if not opt.noautoanchor:
  187. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  188. model.half().float() # pre-reduce anchor precision
  189. # DDP mode
  190. if cuda and RANK != -1:
  191. model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
  192. # Model parameters
  193. hyp['box'] *= 3. / nl # scale to layers
  194. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  195. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  196. hyp['label_smoothing'] = opt.label_smoothing
  197. model.nc = nc # attach number of classes to model
  198. model.hyp = hyp # attach hyperparameters to model
  199. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  200. model.names = names
  201. # Start training
  202. t0 = time.time()
  203. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  204. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  205. last_opt_step = -1
  206. maps = np.zeros(nc) # mAP per class
  207. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  208. scheduler.last_epoch = start_epoch - 1 # do not move
  209. scaler = amp.GradScaler(enabled=cuda)
  210. compute_loss = ComputeLoss(model) # init loss class
  211. LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
  212. f'Using {train_loader.num_workers} dataloader workers\n'
  213. f'Logging results to {save_dir}\n'
  214. f'Starting training for {epochs} epochs...')
  215. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  216. model.train()
  217. # Update image weights (optional)
  218. if opt.image_weights:
  219. # Generate indices
  220. if RANK in [-1, 0]:
  221. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  222. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  223. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  224. # Broadcast if DDP
  225. if RANK != -1:
  226. indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()
  227. dist.broadcast(indices, 0)
  228. if RANK != 0:
  229. dataset.indices = indices.cpu().numpy()
  230. # Update mosaic border
  231. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  232. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  233. mloss = torch.zeros(3, device=device) # mean losses
  234. if RANK != -1:
  235. train_loader.sampler.set_epoch(epoch)
  236. pbar = enumerate(train_loader)
  237. LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
  238. if RANK in [-1, 0]:
  239. pbar = tqdm(pbar, total=nb) # progress bar
  240. optimizer.zero_grad()
  241. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  242. ni = i + nb * epoch # number integrated batches (since train start)
  243. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  244. # Warmup
  245. if ni <= nw:
  246. xi = [0, nw] # x interp
  247. # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  248. accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
  249. for j, x in enumerate(optimizer.param_groups):
  250. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  251. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  252. if 'momentum' in x:
  253. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  254. # Multi-scale
  255. if opt.multi_scale:
  256. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  257. sf = sz / max(imgs.shape[2:]) # scale factor
  258. if sf != 1:
  259. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  260. imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  261. # Forward
  262. with amp.autocast(enabled=cuda):
  263. pred = model(imgs) # forward
  264. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  265. if RANK != -1:
  266. loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
  267. if opt.quad:
  268. loss *= 4.
  269. # Backward
  270. scaler.scale(loss).backward()
  271. # Optimize
  272. if ni - last_opt_step >= accumulate:
  273. scaler.step(optimizer) # optimizer.step
  274. scaler.update()
  275. optimizer.zero_grad()
  276. if ema:
  277. ema.update(model)
  278. last_opt_step = ni
  279. # Log
  280. if RANK in [-1, 0]:
  281. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  282. mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
  283. pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
  284. f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
  285. loggers.on_train_batch_end(ni, model, imgs, targets, paths, plots)
  286. # end batch ------------------------------------------------------------------------------------------------
  287. # Scheduler
  288. lr = [x['lr'] for x in optimizer.param_groups] # for loggers
  289. scheduler.step()
  290. if RANK in [-1, 0]:
  291. # mAP
  292. loggers.on_train_epoch_end(epoch)
  293. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
  294. final_epoch = epoch + 1 == epochs
  295. if not noval or final_epoch: # Calculate mAP
  296. results, maps, _ = val.run(data_dict,
  297. batch_size=batch_size // WORLD_SIZE * 2,
  298. imgsz=imgsz,
  299. model=ema.ema,
  300. single_cls=single_cls,
  301. dataloader=val_loader,
  302. save_dir=save_dir,
  303. save_json=is_coco and final_epoch,
  304. verbose=nc < 50 and final_epoch,
  305. plots=plots and final_epoch,
  306. loggers=loggers,
  307. compute_loss=compute_loss)
  308. # Update best mAP
  309. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  310. if fi > best_fitness:
  311. best_fitness = fi
  312. loggers.on_train_val_end(mloss, results, lr, epoch, best_fitness, fi)
  313. # Save model
  314. if (not nosave) or (final_epoch and not evolve): # if save
  315. ckpt = {'epoch': epoch,
  316. 'best_fitness': best_fitness,
  317. 'model': deepcopy(de_parallel(model)).half(),
  318. 'ema': deepcopy(ema.ema).half(),
  319. 'updates': ema.updates,
  320. 'optimizer': optimizer.state_dict(),
  321. 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None}
  322. # Save last, best and delete
  323. torch.save(ckpt, last)
  324. if best_fitness == fi:
  325. torch.save(ckpt, best)
  326. del ckpt
  327. loggers.on_model_save(last, epoch, final_epoch, best_fitness, fi)
  328. # end epoch ----------------------------------------------------------------------------------------------------
  329. # end training -----------------------------------------------------------------------------------------------------
  330. if RANK in [-1, 0]:
  331. LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
  332. if not evolve:
  333. if is_coco: # COCO dataset
  334. for m in [last, best] if best.exists() else [last]: # speed, mAP tests
  335. results, _, _ = val.run(data_dict,
  336. batch_size=batch_size // WORLD_SIZE * 2,
  337. imgsz=imgsz,
  338. model=attempt_load(m, device).half(),
  339. iou_thres=0.7, # NMS IoU threshold for best pycocotools results
  340. single_cls=single_cls,
  341. dataloader=val_loader,
  342. save_dir=save_dir,
  343. save_json=True,
  344. plots=False)
  345. # Strip optimizers
  346. for f in last, best:
  347. if f.exists():
  348. strip_optimizer(f) # strip optimizers
  349. loggers.on_train_end(last, best, plots)
  350. torch.cuda.empty_cache()
  351. return results
  352. def parse_opt(known=False):
  353. parser = argparse.ArgumentParser()
  354. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  355. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  356. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  357. parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
  358. parser.add_argument('--epochs', type=int, default=300)
  359. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  360. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
  361. parser.add_argument('--rect', action='store_true', help='rectangular training')
  362. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  363. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  364. parser.add_argument('--noval', action='store_true', help='only validate final epoch')
  365. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  366. parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
  367. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  368. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  369. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  370. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  371. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  372. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  373. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  374. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  375. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  376. parser.add_argument('--project', default='runs/train', help='save to project/name')
  377. parser.add_argument('--entity', default=None, help='W&B entity')
  378. parser.add_argument('--name', default='exp', help='save to project/name')
  379. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  380. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  381. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  382. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  383. parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
  384. parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
  385. parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
  386. parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
  387. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  388. opt = parser.parse_known_args()[0] if known else parser.parse_args()
  389. return opt
  390. def main(opt):
  391. set_logging(RANK)
  392. if RANK in [-1, 0]:
  393. print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  394. check_git_status()
  395. check_requirements(exclude=['thop'])
  396. # Resume
  397. if opt.resume and not check_wandb_resume(opt): # resume an interrupted run
  398. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  399. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  400. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  401. opt = argparse.Namespace(**yaml.safe_load(f)) # replace
  402. opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
  403. LOGGER.info(f'Resuming training from {ckpt}')
  404. else:
  405. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  406. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  407. opt.name = 'evolve' if opt.evolve else opt.name
  408. opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
  409. # DDP mode
  410. device = select_device(opt.device, batch_size=opt.batch_size)
  411. if LOCAL_RANK != -1:
  412. from datetime import timedelta
  413. assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
  414. assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
  415. assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
  416. assert not opt.evolve, '--evolve argument is not compatible with DDP training'
  417. assert not opt.sync_bn, '--sync-bn known training issue, see https://github.com/ultralytics/yolov5/issues/3998'
  418. torch.cuda.set_device(LOCAL_RANK)
  419. device = torch.device('cuda', LOCAL_RANK)
  420. dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60))
  421. # Train
  422. if not opt.evolve:
  423. train(opt.hyp, opt, device)
  424. if WORLD_SIZE > 1 and RANK == 0:
  425. _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]
  426. # Evolve hyperparameters (optional)
  427. else:
  428. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  429. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  430. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  431. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  432. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  433. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  434. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  435. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  436. 'box': (1, 0.02, 0.2), # box loss gain
  437. 'cls': (1, 0.2, 4.0), # cls loss gain
  438. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  439. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  440. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  441. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  442. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  443. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  444. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  445. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  446. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  447. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  448. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  449. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  450. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  451. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  452. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  453. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  454. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  455. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  456. 'mixup': (1, 0.0, 1.0), # image mixup (probability)
  457. 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
  458. with open(opt.hyp) as f:
  459. hyp = yaml.safe_load(f) # load hyps dict
  460. if 'anchors' not in hyp: # anchors commented in hyp.yaml
  461. hyp['anchors'] = 3
  462. opt.noval, opt.nosave = True, True # only val/save final epoch
  463. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  464. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  465. if opt.bucket:
  466. os.system(f'gsutil cp gs://{opt.bucket}/evolve.txt .') # download evolve.txt if exists
  467. for _ in range(opt.evolve): # generations to evolve
  468. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  469. # Select parent(s)
  470. parent = 'single' # parent selection method: 'single' or 'weighted'
  471. x = np.loadtxt('evolve.txt', ndmin=2)
  472. n = min(5, len(x)) # number of previous results to consider
  473. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  474. w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
  475. if parent == 'single' or len(x) == 1:
  476. # x = x[random.randint(0, n - 1)] # random selection
  477. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  478. elif parent == 'weighted':
  479. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  480. # Mutate
  481. mp, s = 0.8, 0.2 # mutation probability, sigma
  482. npr = np.random
  483. npr.seed(int(time.time()))
  484. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  485. ng = len(meta)
  486. v = np.ones(ng)
  487. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  488. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  489. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  490. hyp[k] = float(x[i + 7] * v[i]) # mutate
  491. # Constrain to limits
  492. for k, v in meta.items():
  493. hyp[k] = max(hyp[k], v[1]) # lower limit
  494. hyp[k] = min(hyp[k], v[2]) # upper limit
  495. hyp[k] = round(hyp[k], 5) # significant digits
  496. # Train mutation
  497. results = train(hyp.copy(), opt, device)
  498. # Write mutation results
  499. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  500. # Plot results
  501. plot_evolution(yaml_file)
  502. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  503. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
  504. def run(**kwargs):
  505. # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
  506. opt = parse_opt(True)
  507. for k, v in kwargs.items():
  508. setattr(opt, k, v)
  509. main(opt)
  510. if __name__ == "__main__":
  511. opt = parse_opt()
  512. main(opt)