您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

364 行
16KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Export a YOLOv5 PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
  4. TensorFlow exports authored by https://github.com/zldrobit
  5. Usage:
  6. $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml saved_model pb tflite tfjs
  7. Inference:
  8. $ python path/to/detect.py --weights yolov5s.pt
  9. yolov5s.onnx (must export with --dynamic)
  10. yolov5s_saved_model
  11. yolov5s.pb
  12. yolov5s.tflite
  13. TensorFlow.js:
  14. $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
  15. $ npm install
  16. $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
  17. $ npm start
  18. """
  19. import argparse
  20. import subprocess
  21. import sys
  22. import time
  23. from pathlib import Path
  24. import torch
  25. import torch.nn as nn
  26. from torch.utils.mobile_optimizer import optimize_for_mobile
  27. FILE = Path(__file__).resolve()
  28. ROOT = FILE.parents[0] # YOLOv5 root directory
  29. if str(ROOT) not in sys.path:
  30. sys.path.append(str(ROOT)) # add ROOT to PATH
  31. ROOT = ROOT.relative_to(Path.cwd()) # relative
  32. from models.common import Conv
  33. from models.experimental import attempt_load
  34. from models.yolo import Detect
  35. from utils.activations import SiLU
  36. from utils.datasets import LoadImages
  37. from utils.general import colorstr, check_dataset, check_img_size, check_requirements, file_size, print_args, \
  38. set_logging, url2file
  39. from utils.torch_utils import select_device
  40. def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
  41. # YOLOv5 TorchScript model export
  42. try:
  43. print(f'\n{prefix} starting export with torch {torch.__version__}...')
  44. f = file.with_suffix('.torchscript.pt')
  45. ts = torch.jit.trace(model, im, strict=False)
  46. (optimize_for_mobile(ts) if optimize else ts).save(f)
  47. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  48. except Exception as e:
  49. print(f'{prefix} export failure: {e}')
  50. def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
  51. # YOLOv5 ONNX export
  52. try:
  53. check_requirements(('onnx',))
  54. import onnx
  55. print(f'\n{prefix} starting export with onnx {onnx.__version__}...')
  56. f = file.with_suffix('.onnx')
  57. torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
  58. training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
  59. do_constant_folding=not train,
  60. input_names=['images'],
  61. output_names=['output'],
  62. dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
  63. 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
  64. } if dynamic else None)
  65. # Checks
  66. model_onnx = onnx.load(f) # load onnx model
  67. onnx.checker.check_model(model_onnx) # check onnx model
  68. # print(onnx.helper.printable_graph(model_onnx.graph)) # print
  69. # Simplify
  70. if simplify:
  71. try:
  72. check_requirements(('onnx-simplifier',))
  73. import onnxsim
  74. print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
  75. model_onnx, check = onnxsim.simplify(
  76. model_onnx,
  77. dynamic_input_shape=dynamic,
  78. input_shapes={'images': list(im.shape)} if dynamic else None)
  79. assert check, 'assert check failed'
  80. onnx.save(model_onnx, f)
  81. except Exception as e:
  82. print(f'{prefix} simplifier failure: {e}')
  83. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  84. print(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
  85. except Exception as e:
  86. print(f'{prefix} export failure: {e}')
  87. def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
  88. # YOLOv5 CoreML export
  89. ct_model = None
  90. try:
  91. check_requirements(('coremltools',))
  92. import coremltools as ct
  93. print(f'\n{prefix} starting export with coremltools {ct.__version__}...')
  94. f = file.with_suffix('.mlmodel')
  95. model.train() # CoreML exports should be placed in model.train() mode
  96. ts = torch.jit.trace(model, im, strict=False) # TorchScript model
  97. ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255.0, bias=[0, 0, 0])])
  98. ct_model.save(f)
  99. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  100. except Exception as e:
  101. print(f'\n{prefix} export failure: {e}')
  102. return ct_model
  103. def export_saved_model(model, im, file, dynamic,
  104. tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
  105. conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
  106. # YOLOv5 TensorFlow saved_model export
  107. keras_model = None
  108. try:
  109. import tensorflow as tf
  110. from tensorflow import keras
  111. from models.tf import TFModel, TFDetect
  112. print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
  113. f = str(file).replace('.pt', '_saved_model')
  114. batch_size, ch, *imgsz = list(im.shape) # BCHW
  115. tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
  116. im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
  117. y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
  118. inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
  119. outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
  120. keras_model = keras.Model(inputs=inputs, outputs=outputs)
  121. keras_model.trainable = False
  122. keras_model.summary()
  123. keras_model.save(f, save_format='tf')
  124. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  125. except Exception as e:
  126. print(f'\n{prefix} export failure: {e}')
  127. return keras_model
  128. def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
  129. # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
  130. try:
  131. import tensorflow as tf
  132. from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
  133. print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
  134. f = file.with_suffix('.pb')
  135. m = tf.function(lambda x: keras_model(x)) # full model
  136. m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
  137. frozen_func = convert_variables_to_constants_v2(m)
  138. frozen_func.graph.as_graph_def()
  139. tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
  140. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  141. except Exception as e:
  142. print(f'\n{prefix} export failure: {e}')
  143. def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
  144. # YOLOv5 TensorFlow Lite export
  145. try:
  146. import tensorflow as tf
  147. from models.tf import representative_dataset_gen
  148. print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
  149. batch_size, ch, *imgsz = list(im.shape) # BCHW
  150. f = str(file).replace('.pt', '-fp16.tflite')
  151. converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
  152. converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
  153. converter.target_spec.supported_types = [tf.float16]
  154. converter.optimizations = [tf.lite.Optimize.DEFAULT]
  155. if int8:
  156. dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
  157. converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
  158. converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
  159. converter.target_spec.supported_types = []
  160. converter.inference_input_type = tf.uint8 # or tf.int8
  161. converter.inference_output_type = tf.uint8 # or tf.int8
  162. converter.experimental_new_quantizer = False
  163. f = str(file).replace('.pt', '-int8.tflite')
  164. tflite_model = converter.convert()
  165. open(f, "wb").write(tflite_model)
  166. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  167. except Exception as e:
  168. print(f'\n{prefix} export failure: {e}')
  169. def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
  170. # YOLOv5 TensorFlow.js export
  171. try:
  172. check_requirements(('tensorflowjs',))
  173. import re
  174. import tensorflowjs as tfjs
  175. print(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
  176. f = str(file).replace('.pt', '_web_model') # js dir
  177. f_pb = file.with_suffix('.pb') # *.pb path
  178. f_json = f + '/model.json' # *.json path
  179. cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
  180. f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
  181. subprocess.run(cmd, shell=True)
  182. json = open(f_json).read()
  183. with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
  184. subst = re.sub(
  185. r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
  186. r'"Identity.?.?": {"name": "Identity.?.?"}, '
  187. r'"Identity.?.?": {"name": "Identity.?.?"}, '
  188. r'"Identity.?.?": {"name": "Identity.?.?"}}}',
  189. r'{"outputs": {"Identity": {"name": "Identity"}, '
  190. r'"Identity_1": {"name": "Identity_1"}, '
  191. r'"Identity_2": {"name": "Identity_2"}, '
  192. r'"Identity_3": {"name": "Identity_3"}}}',
  193. json)
  194. j.write(subst)
  195. print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
  196. except Exception as e:
  197. print(f'\n{prefix} export failure: {e}')
  198. @torch.no_grad()
  199. def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
  200. weights=ROOT / 'yolov5s.pt', # weights path
  201. imgsz=(640, 640), # image (height, width)
  202. batch_size=1, # batch size
  203. device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  204. include=('torchscript', 'onnx', 'coreml'), # include formats
  205. half=False, # FP16 half-precision export
  206. inplace=False, # set YOLOv5 Detect() inplace=True
  207. train=False, # model.train() mode
  208. optimize=False, # TorchScript: optimize for mobile
  209. int8=False, # CoreML/TF INT8 quantization
  210. dynamic=False, # ONNX/TF: dynamic axes
  211. simplify=False, # ONNX: simplify model
  212. opset=12, # ONNX: opset version
  213. topk_per_class=100, # TF.js NMS: topk per class to keep
  214. topk_all=100, # TF.js NMS: topk for all classes to keep
  215. iou_thres=0.45, # TF.js NMS: IoU threshold
  216. conf_thres=0.25 # TF.js NMS: confidence threshold
  217. ):
  218. t = time.time()
  219. include = [x.lower() for x in include]
  220. tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
  221. imgsz *= 2 if len(imgsz) == 1 else 1 # expand
  222. file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)
  223. # Load PyTorch model
  224. device = select_device(device)
  225. assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
  226. model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
  227. nc, names = model.nc, model.names # number of classes, class names
  228. # Input
  229. gs = int(max(model.stride)) # grid size (max stride)
  230. imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
  231. im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
  232. # Update model
  233. if half:
  234. im, model = im.half(), model.half() # to FP16
  235. model.train() if train else model.eval() # training mode = no Detect() layer grid construction
  236. for k, m in model.named_modules():
  237. if isinstance(m, Conv): # assign export-friendly activations
  238. if isinstance(m.act, nn.SiLU):
  239. m.act = SiLU()
  240. elif isinstance(m, Detect):
  241. m.inplace = inplace
  242. m.onnx_dynamic = dynamic
  243. # m.forward = m.forward_export # assign forward (optional)
  244. for _ in range(2):
  245. y = model(im) # dry runs
  246. print(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")
  247. # Exports
  248. if 'torchscript' in include:
  249. export_torchscript(model, im, file, optimize)
  250. if 'onnx' in include:
  251. export_onnx(model, im, file, opset, train, dynamic, simplify)
  252. if 'coreml' in include:
  253. export_coreml(model, im, file)
  254. # TensorFlow Exports
  255. if any(tf_exports):
  256. pb, tflite, tfjs = tf_exports[1:]
  257. assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
  258. model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs,
  259. topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres,
  260. iou_thres=iou_thres) # keras model
  261. if pb or tfjs: # pb prerequisite to tfjs
  262. export_pb(model, im, file)
  263. if tflite:
  264. export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
  265. if tfjs:
  266. export_tfjs(model, im, file)
  267. # Finish
  268. print(f'\nExport complete ({time.time() - t:.2f}s)'
  269. f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
  270. f'\nVisualize with https://netron.app')
  271. def parse_opt():
  272. parser = argparse.ArgumentParser()
  273. parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
  274. parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
  275. parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
  276. parser.add_argument('--batch-size', type=int, default=1, help='batch size')
  277. parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  278. parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
  279. parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
  280. parser.add_argument('--train', action='store_true', help='model.train() mode')
  281. parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
  282. parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
  283. parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
  284. parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
  285. parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
  286. parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
  287. parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
  288. parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
  289. parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
  290. parser.add_argument('--include', nargs='+',
  291. default=['torchscript', 'onnx'],
  292. help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
  293. opt = parser.parse_args()
  294. print_args(FILE.stem, opt)
  295. return opt
  296. def main(opt):
  297. set_logging()
  298. run(**vars(opt))
  299. if __name__ == "__main__":
  300. opt = parse_opt()
  301. main(opt)