You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1027 lines
41KB

  1. # Dataset utils and dataloaders
  2. import glob
  3. import logging
  4. import math
  5. import os
  6. import random
  7. import shutil
  8. import time
  9. from itertools import repeat
  10. from multiprocessing.pool import ThreadPool
  11. from pathlib import Path
  12. from threading import Thread
  13. import cv2
  14. import numpy as np
  15. import torch
  16. import torch.nn.functional as F
  17. from PIL import Image, ExifTags
  18. from torch.utils.data import Dataset
  19. from tqdm import tqdm
  20. from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, clean_str
  21. from utils.torch_utils import torch_distributed_zero_first
  22. # Parameters
  23. help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
  24. img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
  25. vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
  26. logger = logging.getLogger(__name__)
  27. # Get orientation exif tag
  28. for orientation in ExifTags.TAGS.keys():
  29. if ExifTags.TAGS[orientation] == 'Orientation':
  30. break
  31. def get_hash(files):
  32. # Returns a single hash value of a list of files
  33. return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
  34. def exif_size(img):
  35. # Returns exif-corrected PIL size
  36. s = img.size # (width, height)
  37. try:
  38. rotation = dict(img._getexif().items())[orientation]
  39. if rotation == 6: # rotation 270
  40. s = (s[1], s[0])
  41. elif rotation == 8: # rotation 90
  42. s = (s[1], s[0])
  43. except:
  44. pass
  45. return s
  46. def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
  47. rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
  48. # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
  49. with torch_distributed_zero_first(rank):
  50. dataset = LoadImagesAndLabels(path, imgsz, batch_size,
  51. augment=augment, # augment images
  52. hyp=hyp, # augmentation hyperparameters
  53. rect=rect, # rectangular training
  54. cache_images=cache,
  55. single_cls=opt.single_cls,
  56. stride=int(stride),
  57. pad=pad,
  58. image_weights=image_weights,
  59. prefix=prefix)
  60. batch_size = min(batch_size, len(dataset))
  61. nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
  62. sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
  63. loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
  64. # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
  65. dataloader = loader(dataset,
  66. batch_size=batch_size,
  67. num_workers=nw,
  68. sampler=sampler,
  69. pin_memory=True,
  70. collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
  71. return dataloader, dataset
  72. class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
  73. """ Dataloader that reuses workers
  74. Uses same syntax as vanilla DataLoader
  75. """
  76. def __init__(self, *args, **kwargs):
  77. super().__init__(*args, **kwargs)
  78. object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
  79. self.iterator = super().__iter__()
  80. def __len__(self):
  81. return len(self.batch_sampler.sampler)
  82. def __iter__(self):
  83. for i in range(len(self)):
  84. yield next(self.iterator)
  85. class _RepeatSampler(object):
  86. """ Sampler that repeats forever
  87. Args:
  88. sampler (Sampler)
  89. """
  90. def __init__(self, sampler):
  91. self.sampler = sampler
  92. def __iter__(self):
  93. while True:
  94. yield from iter(self.sampler)
  95. class LoadImages: # for inference
  96. def __init__(self, path, img_size=640):
  97. p = str(Path(path)) # os-agnostic
  98. p = os.path.abspath(p) # absolute path
  99. if '*' in p:
  100. files = sorted(glob.glob(p, recursive=True)) # glob
  101. elif os.path.isdir(p):
  102. files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
  103. elif os.path.isfile(p):
  104. files = [p] # files
  105. else:
  106. raise Exception(f'ERROR: {p} does not exist')
  107. images = [x for x in files if x.split('.')[-1].lower() in img_formats]
  108. videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
  109. ni, nv = len(images), len(videos)
  110. self.img_size = img_size
  111. self.files = images + videos
  112. self.nf = ni + nv # number of files
  113. self.video_flag = [False] * ni + [True] * nv
  114. self.mode = 'image'
  115. if any(videos):
  116. self.new_video(videos[0]) # new video
  117. else:
  118. self.cap = None
  119. assert self.nf > 0, f'No images or videos found in {p}. ' \
  120. f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
  121. def __iter__(self):
  122. self.count = 0
  123. return self
  124. def __next__(self):
  125. if self.count == self.nf:
  126. raise StopIteration
  127. path = self.files[self.count]
  128. if self.video_flag[self.count]:
  129. # Read video
  130. self.mode = 'video'
  131. ret_val, img0 = self.cap.read()
  132. if not ret_val:
  133. self.count += 1
  134. self.cap.release()
  135. if self.count == self.nf: # last video
  136. raise StopIteration
  137. else:
  138. path = self.files[self.count]
  139. self.new_video(path)
  140. ret_val, img0 = self.cap.read()
  141. self.frame += 1
  142. print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
  143. else:
  144. # Read image
  145. self.count += 1
  146. img0 = cv2.imread(path) # BGR
  147. assert img0 is not None, 'Image Not Found ' + path
  148. print(f'image {self.count}/{self.nf} {path}: ', end='')
  149. # Padded resize
  150. img = letterbox(img0, new_shape=self.img_size)[0]
  151. # Convert
  152. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  153. img = np.ascontiguousarray(img)
  154. return path, img, img0, self.cap
  155. def new_video(self, path):
  156. self.frame = 0
  157. self.cap = cv2.VideoCapture(path)
  158. self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
  159. def __len__(self):
  160. return self.nf # number of files
  161. class LoadWebcam: # for inference
  162. def __init__(self, pipe='0', img_size=640):
  163. self.img_size = img_size
  164. if pipe.isnumeric():
  165. pipe = eval(pipe) # local camera
  166. # pipe = 'rtsp://192.168.1.64/1' # IP camera
  167. # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
  168. # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
  169. self.pipe = pipe
  170. self.cap = cv2.VideoCapture(pipe) # video capture object
  171. self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
  172. def __iter__(self):
  173. self.count = -1
  174. return self
  175. def __next__(self):
  176. self.count += 1
  177. if cv2.waitKey(1) == ord('q'): # q to quit
  178. self.cap.release()
  179. cv2.destroyAllWindows()
  180. raise StopIteration
  181. # Read frame
  182. if self.pipe == 0: # local camera
  183. ret_val, img0 = self.cap.read()
  184. img0 = cv2.flip(img0, 1) # flip left-right
  185. else: # IP camera
  186. n = 0
  187. while True:
  188. n += 1
  189. self.cap.grab()
  190. if n % 30 == 0: # skip frames
  191. ret_val, img0 = self.cap.retrieve()
  192. if ret_val:
  193. break
  194. # Print
  195. assert ret_val, f'Camera Error {self.pipe}'
  196. img_path = 'webcam.jpg'
  197. print(f'webcam {self.count}: ', end='')
  198. # Padded resize
  199. img = letterbox(img0, new_shape=self.img_size)[0]
  200. # Convert
  201. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  202. img = np.ascontiguousarray(img)
  203. return img_path, img, img0, None
  204. def __len__(self):
  205. return 0
  206. class LoadStreams: # multiple IP or RTSP cameras
  207. def __init__(self, sources='streams.txt', img_size=640):
  208. self.mode = 'stream'
  209. self.img_size = img_size
  210. if os.path.isfile(sources):
  211. with open(sources, 'r') as f:
  212. sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
  213. else:
  214. sources = [sources]
  215. n = len(sources)
  216. self.imgs = [None] * n
  217. self.sources = [clean_str(x) for x in sources] # clean source names for later
  218. for i, s in enumerate(sources):
  219. # Start the thread to read frames from the video stream
  220. print(f'{i + 1}/{n}: {s}... ', end='')
  221. cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
  222. assert cap.isOpened(), f'Failed to open {s}'
  223. w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  224. h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  225. fps = cap.get(cv2.CAP_PROP_FPS) % 100
  226. _, self.imgs[i] = cap.read() # guarantee first frame
  227. thread = Thread(target=self.update, args=([i, cap]), daemon=True)
  228. print(f' success ({w}x{h} at {fps:.2f} FPS).')
  229. thread.start()
  230. print('') # newline
  231. # check for common shapes
  232. s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
  233. self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
  234. if not self.rect:
  235. print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
  236. def update(self, index, cap):
  237. # Read next stream frame in a daemon thread
  238. n = 0
  239. while cap.isOpened():
  240. n += 1
  241. # _, self.imgs[index] = cap.read()
  242. cap.grab()
  243. if n == 4: # read every 4th frame
  244. _, self.imgs[index] = cap.retrieve()
  245. n = 0
  246. time.sleep(0.01) # wait time
  247. def __iter__(self):
  248. self.count = -1
  249. return self
  250. def __next__(self):
  251. self.count += 1
  252. img0 = self.imgs.copy()
  253. if cv2.waitKey(1) == ord('q'): # q to quit
  254. cv2.destroyAllWindows()
  255. raise StopIteration
  256. # Letterbox
  257. img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
  258. # Stack
  259. img = np.stack(img, 0)
  260. # Convert
  261. img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
  262. img = np.ascontiguousarray(img)
  263. return self.sources, img, img0, None
  264. def __len__(self):
  265. return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
  266. def img2label_paths(img_paths):
  267. # Define label paths as a function of image paths
  268. sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
  269. return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
  270. class LoadImagesAndLabels(Dataset): # for training/testing
  271. def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
  272. cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
  273. self.img_size = img_size
  274. self.augment = augment
  275. self.hyp = hyp
  276. self.image_weights = image_weights
  277. self.rect = False if image_weights else rect
  278. self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
  279. self.mosaic_border = [-img_size // 2, -img_size // 2]
  280. self.stride = stride
  281. try:
  282. f = [] # image files
  283. for p in path if isinstance(path, list) else [path]:
  284. p = Path(p) # os-agnostic
  285. if p.is_dir(): # dir
  286. f += glob.glob(str(p / '**' / '*.*'), recursive=True)
  287. elif p.is_file(): # file
  288. with open(p, 'r') as t:
  289. t = t.read().strip().splitlines()
  290. parent = str(p.parent) + os.sep
  291. f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
  292. else:
  293. raise Exception(f'{prefix}{p} does not exist')
  294. self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
  295. assert self.img_files, f'{prefix}No images found'
  296. except Exception as e:
  297. raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
  298. # Check cache
  299. self.label_files = img2label_paths(self.img_files) # labels
  300. cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
  301. if cache_path.is_file():
  302. cache = torch.load(cache_path) # load
  303. if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
  304. cache = self.cache_labels(cache_path, prefix) # re-cache
  305. else:
  306. cache = self.cache_labels(cache_path, prefix) # cache
  307. # Display cache
  308. [nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
  309. desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  310. tqdm(None, desc=prefix + desc, total=n, initial=n)
  311. assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
  312. # Read cache
  313. cache.pop('hash') # remove hash
  314. labels, shapes = zip(*cache.values())
  315. self.labels = list(labels)
  316. self.shapes = np.array(shapes, dtype=np.float64)
  317. self.img_files = list(cache.keys()) # update
  318. self.label_files = img2label_paths(cache.keys()) # update
  319. if single_cls:
  320. for x in self.labels:
  321. x[:, 0] = 0
  322. n = len(shapes) # number of images
  323. bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
  324. nb = bi[-1] + 1 # number of batches
  325. self.batch = bi # batch index of image
  326. self.n = n
  327. self.indices = range(n)
  328. # Rectangular Training
  329. if self.rect:
  330. # Sort by aspect ratio
  331. s = self.shapes # wh
  332. ar = s[:, 1] / s[:, 0] # aspect ratio
  333. irect = ar.argsort()
  334. self.img_files = [self.img_files[i] for i in irect]
  335. self.label_files = [self.label_files[i] for i in irect]
  336. self.labels = [self.labels[i] for i in irect]
  337. self.shapes = s[irect] # wh
  338. ar = ar[irect]
  339. # Set training image shapes
  340. shapes = [[1, 1]] * nb
  341. for i in range(nb):
  342. ari = ar[bi == i]
  343. mini, maxi = ari.min(), ari.max()
  344. if maxi < 1:
  345. shapes[i] = [maxi, 1]
  346. elif mini > 1:
  347. shapes[i] = [1, 1 / mini]
  348. self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
  349. # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
  350. self.imgs = [None] * n
  351. if cache_images:
  352. gb = 0 # Gigabytes of cached images
  353. self.img_hw0, self.img_hw = [None] * n, [None] * n
  354. results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
  355. pbar = tqdm(enumerate(results), total=n)
  356. for i, x in pbar:
  357. self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
  358. gb += self.imgs[i].nbytes
  359. pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
  360. def cache_labels(self, path=Path('./labels.cache'), prefix=''):
  361. # Cache dataset labels, check images and read shapes
  362. x = {} # dict
  363. nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
  364. pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
  365. for i, (im_file, lb_file) in enumerate(pbar):
  366. try:
  367. # verify images
  368. im = Image.open(im_file)
  369. im.verify() # PIL verify
  370. shape = exif_size(im) # image size
  371. assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
  372. assert im.format.lower() in img_formats, f'invalid image format {im.format}'
  373. # verify labels
  374. if os.path.isfile(lb_file):
  375. nf += 1 # label found
  376. with open(lb_file, 'r') as f:
  377. l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  378. if len(l):
  379. assert l.shape[1] == 5, 'labels require 5 columns each'
  380. assert (l >= 0).all(), 'negative labels'
  381. assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
  382. assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
  383. else:
  384. ne += 1 # label empty
  385. l = np.zeros((0, 5), dtype=np.float32)
  386. else:
  387. nm += 1 # label missing
  388. l = np.zeros((0, 5), dtype=np.float32)
  389. x[im_file] = [l, shape]
  390. except Exception as e:
  391. nc += 1
  392. print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
  393. pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' for images and labels... " \
  394. f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  395. if nf == 0:
  396. print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
  397. x['hash'] = get_hash(self.label_files + self.img_files)
  398. x['results'] = [nf, nm, ne, nc, i + 1]
  399. torch.save(x, path) # save for next time
  400. logging.info(f'{prefix}New cache created: {path}')
  401. return x
  402. def __len__(self):
  403. return len(self.img_files)
  404. # def __iter__(self):
  405. # self.count = -1
  406. # print('ran dataset iter')
  407. # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
  408. # return self
  409. def __getitem__(self, index):
  410. index = self.indices[index] # linear, shuffled, or image_weights
  411. hyp = self.hyp
  412. mosaic = self.mosaic and random.random() < hyp['mosaic']
  413. if mosaic:
  414. # Load mosaic
  415. img, labels = load_mosaic(self, index)
  416. shapes = None
  417. # MixUp https://arxiv.org/pdf/1710.09412.pdf
  418. if random.random() < hyp['mixup']:
  419. img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
  420. r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
  421. img = (img * r + img2 * (1 - r)).astype(np.uint8)
  422. labels = np.concatenate((labels, labels2), 0)
  423. else:
  424. # Load image
  425. img, (h0, w0), (h, w) = load_image(self, index)
  426. # Letterbox
  427. shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
  428. img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
  429. shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
  430. labels = self.labels[index].copy()
  431. if labels.size: # normalized xywh to pixel xyxy format
  432. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
  433. if self.augment:
  434. # Augment imagespace
  435. if not mosaic:
  436. img, labels = random_perspective(img, labels,
  437. degrees=hyp['degrees'],
  438. translate=hyp['translate'],
  439. scale=hyp['scale'],
  440. shear=hyp['shear'],
  441. perspective=hyp['perspective'])
  442. # Augment colorspace
  443. augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
  444. # Apply cutouts
  445. # if random.random() < 0.9:
  446. # labels = cutout(img, labels)
  447. nL = len(labels) # number of labels
  448. if nL:
  449. labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
  450. labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
  451. labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
  452. if self.augment:
  453. # flip up-down
  454. if random.random() < hyp['flipud']:
  455. img = np.flipud(img)
  456. if nL:
  457. labels[:, 2] = 1 - labels[:, 2]
  458. # flip left-right
  459. if random.random() < hyp['fliplr']:
  460. img = np.fliplr(img)
  461. if nL:
  462. labels[:, 1] = 1 - labels[:, 1]
  463. labels_out = torch.zeros((nL, 6))
  464. if nL:
  465. labels_out[:, 1:] = torch.from_numpy(labels)
  466. # Convert
  467. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  468. img = np.ascontiguousarray(img)
  469. return torch.from_numpy(img), labels_out, self.img_files[index], shapes
  470. @staticmethod
  471. def collate_fn(batch):
  472. img, label, path, shapes = zip(*batch) # transposed
  473. for i, l in enumerate(label):
  474. l[:, 0] = i # add target image index for build_targets()
  475. return torch.stack(img, 0), torch.cat(label, 0), path, shapes
  476. @staticmethod
  477. def collate_fn4(batch):
  478. img, label, path, shapes = zip(*batch) # transposed
  479. n = len(shapes) // 4
  480. img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
  481. ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
  482. wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
  483. s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
  484. for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
  485. i *= 4
  486. if random.random() < 0.5:
  487. im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
  488. 0].type(img[i].type())
  489. l = label[i]
  490. else:
  491. im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
  492. l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
  493. img4.append(im)
  494. label4.append(l)
  495. for i, l in enumerate(label4):
  496. l[:, 0] = i # add target image index for build_targets()
  497. return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
  498. # Ancillary functions --------------------------------------------------------------------------------------------------
  499. def load_image(self, index):
  500. # loads 1 image from dataset, returns img, original hw, resized hw
  501. img = self.imgs[index]
  502. if img is None: # not cached
  503. path = self.img_files[index]
  504. img = cv2.imread(path) # BGR
  505. assert img is not None, 'Image Not Found ' + path
  506. h0, w0 = img.shape[:2] # orig hw
  507. r = self.img_size / max(h0, w0) # resize image to img_size
  508. if r != 1: # always resize down, only resize up if training with augmentation
  509. interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
  510. img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
  511. return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
  512. else:
  513. return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
  514. def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
  515. r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
  516. hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
  517. dtype = img.dtype # uint8
  518. x = np.arange(0, 256, dtype=np.int16)
  519. lut_hue = ((x * r[0]) % 180).astype(dtype)
  520. lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
  521. lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
  522. img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
  523. cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
  524. def hist_equalize(img, clahe=True, bgr=False):
  525. # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
  526. yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
  527. if clahe:
  528. c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
  529. yuv[:, :, 0] = c.apply(yuv[:, :, 0])
  530. else:
  531. yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
  532. return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
  533. def load_mosaic(self, index):
  534. # loads images in a 4-mosaic
  535. labels4 = []
  536. s = self.img_size
  537. yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
  538. indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
  539. for i, index in enumerate(indices):
  540. # Load image
  541. img, _, (h, w) = load_image(self, index)
  542. # place img in img4
  543. if i == 0: # top left
  544. img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  545. x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
  546. x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
  547. elif i == 1: # top right
  548. x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
  549. x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
  550. elif i == 2: # bottom left
  551. x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
  552. x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
  553. elif i == 3: # bottom right
  554. x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
  555. x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
  556. img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  557. padw = x1a - x1b
  558. padh = y1a - y1b
  559. # Labels
  560. labels = self.labels[index].copy()
  561. if labels.size:
  562. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
  563. labels4.append(labels)
  564. # Concat/clip labels
  565. if len(labels4):
  566. labels4 = np.concatenate(labels4, 0)
  567. np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
  568. # img4, labels4 = replicate(img4, labels4) # replicate
  569. # Augment
  570. img4, labels4 = random_perspective(img4, labels4,
  571. degrees=self.hyp['degrees'],
  572. translate=self.hyp['translate'],
  573. scale=self.hyp['scale'],
  574. shear=self.hyp['shear'],
  575. perspective=self.hyp['perspective'],
  576. border=self.mosaic_border) # border to remove
  577. return img4, labels4
  578. def load_mosaic9(self, index):
  579. # loads images in a 9-mosaic
  580. labels9 = []
  581. s = self.img_size
  582. indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(8)] # 8 additional image indices
  583. for i, index in enumerate(indices):
  584. # Load image
  585. img, _, (h, w) = load_image(self, index)
  586. # place img in img9
  587. if i == 0: # center
  588. img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  589. h0, w0 = h, w
  590. c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
  591. elif i == 1: # top
  592. c = s, s - h, s + w, s
  593. elif i == 2: # top right
  594. c = s + wp, s - h, s + wp + w, s
  595. elif i == 3: # right
  596. c = s + w0, s, s + w0 + w, s + h
  597. elif i == 4: # bottom right
  598. c = s + w0, s + hp, s + w0 + w, s + hp + h
  599. elif i == 5: # bottom
  600. c = s + w0 - w, s + h0, s + w0, s + h0 + h
  601. elif i == 6: # bottom left
  602. c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
  603. elif i == 7: # left
  604. c = s - w, s + h0 - h, s, s + h0
  605. elif i == 8: # top left
  606. c = s - w, s + h0 - hp - h, s, s + h0 - hp
  607. padx, pady = c[:2]
  608. x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
  609. # Labels
  610. labels = self.labels[index].copy()
  611. if labels.size:
  612. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
  613. labels9.append(labels)
  614. # Image
  615. img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
  616. hp, wp = h, w # height, width previous
  617. # Offset
  618. yc, xc = [int(random.uniform(0, s)) for x in self.mosaic_border] # mosaic center x, y
  619. img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
  620. # Concat/clip labels
  621. if len(labels9):
  622. labels9 = np.concatenate(labels9, 0)
  623. labels9[:, [1, 3]] -= xc
  624. labels9[:, [2, 4]] -= yc
  625. np.clip(labels9[:, 1:], 0, 2 * s, out=labels9[:, 1:]) # use with random_perspective
  626. # img9, labels9 = replicate(img9, labels9) # replicate
  627. # Augment
  628. img9, labels9 = random_perspective(img9, labels9,
  629. degrees=self.hyp['degrees'],
  630. translate=self.hyp['translate'],
  631. scale=self.hyp['scale'],
  632. shear=self.hyp['shear'],
  633. perspective=self.hyp['perspective'],
  634. border=self.mosaic_border) # border to remove
  635. return img9, labels9
  636. def replicate(img, labels):
  637. # Replicate labels
  638. h, w = img.shape[:2]
  639. boxes = labels[:, 1:].astype(int)
  640. x1, y1, x2, y2 = boxes.T
  641. s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
  642. for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
  643. x1b, y1b, x2b, y2b = boxes[i]
  644. bh, bw = y2b - y1b, x2b - x1b
  645. yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
  646. x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
  647. img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  648. labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
  649. return img, labels
  650. def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
  651. # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
  652. shape = img.shape[:2] # current shape [height, width]
  653. if isinstance(new_shape, int):
  654. new_shape = (new_shape, new_shape)
  655. # Scale ratio (new / old)
  656. r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
  657. if not scaleup: # only scale down, do not scale up (for better test mAP)
  658. r = min(r, 1.0)
  659. # Compute padding
  660. ratio = r, r # width, height ratios
  661. new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
  662. dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
  663. if auto: # minimum rectangle
  664. dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
  665. elif scaleFill: # stretch
  666. dw, dh = 0.0, 0.0
  667. new_unpad = (new_shape[1], new_shape[0])
  668. ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
  669. dw /= 2 # divide padding into 2 sides
  670. dh /= 2
  671. if shape[::-1] != new_unpad: # resize
  672. img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
  673. top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
  674. left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
  675. img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
  676. return img, ratio, (dw, dh)
  677. def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
  678. # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
  679. # targets = [cls, xyxy]
  680. height = img.shape[0] + border[0] * 2 # shape(h,w,c)
  681. width = img.shape[1] + border[1] * 2
  682. # Center
  683. C = np.eye(3)
  684. C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
  685. C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
  686. # Perspective
  687. P = np.eye(3)
  688. P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
  689. P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
  690. # Rotation and Scale
  691. R = np.eye(3)
  692. a = random.uniform(-degrees, degrees)
  693. # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
  694. s = random.uniform(1 - scale, 1 + scale)
  695. # s = 2 ** random.uniform(-scale, scale)
  696. R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
  697. # Shear
  698. S = np.eye(3)
  699. S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
  700. S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
  701. # Translation
  702. T = np.eye(3)
  703. T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
  704. T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
  705. # Combined rotation matrix
  706. M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
  707. if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
  708. if perspective:
  709. img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
  710. else: # affine
  711. img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
  712. # Visualize
  713. # import matplotlib.pyplot as plt
  714. # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
  715. # ax[0].imshow(img[:, :, ::-1]) # base
  716. # ax[1].imshow(img2[:, :, ::-1]) # warped
  717. # Transform label coordinates
  718. n = len(targets)
  719. if n:
  720. # warp points
  721. xy = np.ones((n * 4, 3))
  722. xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
  723. xy = xy @ M.T # transform
  724. if perspective:
  725. xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
  726. else: # affine
  727. xy = xy[:, :2].reshape(n, 8)
  728. # create new boxes
  729. x = xy[:, [0, 2, 4, 6]]
  730. y = xy[:, [1, 3, 5, 7]]
  731. xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
  732. # # apply angle-based reduction of bounding boxes
  733. # radians = a * math.pi / 180
  734. # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
  735. # x = (xy[:, 2] + xy[:, 0]) / 2
  736. # y = (xy[:, 3] + xy[:, 1]) / 2
  737. # w = (xy[:, 2] - xy[:, 0]) * reduction
  738. # h = (xy[:, 3] - xy[:, 1]) * reduction
  739. # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
  740. # clip boxes
  741. xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
  742. xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
  743. # filter candidates
  744. i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
  745. targets = targets[i]
  746. targets[:, 1:5] = xy[i]
  747. return img, targets
  748. def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
  749. # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
  750. w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
  751. w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
  752. ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
  753. return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
  754. def cutout(image, labels):
  755. # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
  756. h, w = image.shape[:2]
  757. def bbox_ioa(box1, box2):
  758. # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
  759. box2 = box2.transpose()
  760. # Get the coordinates of bounding boxes
  761. b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
  762. b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
  763. # Intersection area
  764. inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
  765. (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
  766. # box2 area
  767. box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
  768. # Intersection over box2 area
  769. return inter_area / box2_area
  770. # create random masks
  771. scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
  772. for s in scales:
  773. mask_h = random.randint(1, int(h * s))
  774. mask_w = random.randint(1, int(w * s))
  775. # box
  776. xmin = max(0, random.randint(0, w) - mask_w // 2)
  777. ymin = max(0, random.randint(0, h) - mask_h // 2)
  778. xmax = min(w, xmin + mask_w)
  779. ymax = min(h, ymin + mask_h)
  780. # apply random color mask
  781. image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
  782. # return unobscured labels
  783. if len(labels) and s > 0.03:
  784. box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
  785. ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
  786. labels = labels[ioa < 0.60] # remove >60% obscured labels
  787. return labels
  788. def create_folder(path='./new'):
  789. # Create folder
  790. if os.path.exists(path):
  791. shutil.rmtree(path) # delete output folder
  792. os.makedirs(path) # make new output folder
  793. def flatten_recursive(path='../coco128'):
  794. # Flatten a recursive directory by bringing all files to top level
  795. new_path = Path(path + '_flat')
  796. create_folder(new_path)
  797. for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
  798. shutil.copyfile(file, new_path / Path(file).name)
  799. def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
  800. # Convert detection dataset into classification dataset, with one directory per class
  801. path = Path(path) # images dir
  802. shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
  803. files = list(path.rglob('*.*'))
  804. n = len(files) # number of files
  805. for im_file in tqdm(files, total=n):
  806. if im_file.suffix[1:] in img_formats:
  807. # image
  808. im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
  809. h, w = im.shape[:2]
  810. # labels
  811. lb_file = Path(img2label_paths([str(im_file)])[0])
  812. if Path(lb_file).exists():
  813. with open(lb_file, 'r') as f:
  814. lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  815. for j, x in enumerate(lb):
  816. c = int(x[0]) # class
  817. f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
  818. if not f.parent.is_dir():
  819. f.parent.mkdir(parents=True)
  820. b = x[1:] * [w, h, w, h] # box
  821. # b[2:] = b[2:].max() # rectangle to square
  822. b[2:] = b[2:] * 1.2 + 3 # pad
  823. b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
  824. b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
  825. b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
  826. assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
  827. def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
  828. """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
  829. # Arguments
  830. path: Path to images directory
  831. weights: Train, val, test weights (list)
  832. """
  833. path = Path(path) # images dir
  834. files = list(path.rglob('*.*'))
  835. n = len(files) # number of files
  836. indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
  837. txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
  838. [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
  839. for i, img in tqdm(zip(indices, files), total=n):
  840. if img.suffix[1:] in img_formats:
  841. with open(path / txt[i], 'a') as f:
  842. f.write(str(img) + '\n') # add image to txt file