Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

359 lines
16KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Validate a trained YOLOv5 model accuracy on a custom dataset
  4. Usage:
  5. $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
  6. """
  7. import argparse
  8. import json
  9. import os
  10. import sys
  11. from pathlib import Path
  12. from threading import Thread
  13. import numpy as np
  14. import torch
  15. from tqdm import tqdm
  16. FILE = Path(__file__).resolve()
  17. ROOT = FILE.parents[0] # YOLOv5 root directory
  18. if str(ROOT) not in sys.path:
  19. sys.path.append(str(ROOT)) # add ROOT to PATH
  20. from models.experimental import attempt_load
  21. from utils.datasets import create_dataloader
  22. from utils.general import coco80_to_coco91_class, check_dataset, check_img_size, check_requirements, \
  23. check_suffix, check_yaml, box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, \
  24. increment_path, colorstr, print_args
  25. from utils.metrics import ap_per_class, ConfusionMatrix
  26. from utils.plots import output_to_target, plot_images, plot_val_study
  27. from utils.torch_utils import select_device, time_sync
  28. from utils.callbacks import Callbacks
  29. def save_one_txt(predn, save_conf, shape, file):
  30. # Save one txt result
  31. gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
  32. for *xyxy, conf, cls in predn.tolist():
  33. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  34. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  35. with open(file, 'a') as f:
  36. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  37. def save_one_json(predn, jdict, path, class_map):
  38. # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
  39. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  40. box = xyxy2xywh(predn[:, :4]) # xywh
  41. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  42. for p, b in zip(predn.tolist(), box.tolist()):
  43. jdict.append({'image_id': image_id,
  44. 'category_id': class_map[int(p[5])],
  45. 'bbox': [round(x, 3) for x in b],
  46. 'score': round(p[4], 5)})
  47. def process_batch(detections, labels, iouv):
  48. """
  49. Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
  50. Arguments:
  51. detections (Array[N, 6]), x1, y1, x2, y2, conf, class
  52. labels (Array[M, 5]), class, x1, y1, x2, y2
  53. Returns:
  54. correct (Array[N, 10]), for 10 IoU levels
  55. """
  56. correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
  57. iou = box_iou(labels[:, 1:], detections[:, :4])
  58. x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
  59. if x[0].shape[0]:
  60. matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
  61. if x[0].shape[0] > 1:
  62. matches = matches[matches[:, 2].argsort()[::-1]]
  63. matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
  64. # matches = matches[matches[:, 2].argsort()[::-1]]
  65. matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
  66. matches = torch.Tensor(matches).to(iouv.device)
  67. correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
  68. return correct
  69. @torch.no_grad()
  70. def run(data,
  71. weights=None, # model.pt path(s)
  72. batch_size=32, # batch size
  73. imgsz=640, # inference size (pixels)
  74. conf_thres=0.001, # confidence threshold
  75. iou_thres=0.6, # NMS IoU threshold
  76. task='val', # train, val, test, speed or study
  77. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  78. single_cls=False, # treat as single-class dataset
  79. augment=False, # augmented inference
  80. verbose=False, # verbose output
  81. save_txt=False, # save results to *.txt
  82. save_hybrid=False, # save label+prediction hybrid results to *.txt
  83. save_conf=False, # save confidences in --save-txt labels
  84. save_json=False, # save a COCO-JSON results file
  85. project='runs/val', # save to project/name
  86. name='exp', # save to project/name
  87. exist_ok=False, # existing project/name ok, do not increment
  88. half=True, # use FP16 half-precision inference
  89. model=None,
  90. dataloader=None,
  91. save_dir=Path(''),
  92. plots=True,
  93. callbacks=Callbacks(),
  94. compute_loss=None,
  95. ):
  96. # Initialize/load model and set device
  97. training = model is not None
  98. if training: # called by train.py
  99. device = next(model.parameters()).device # get model device
  100. else: # called directly
  101. device = select_device(device, batch_size=batch_size)
  102. # Directories
  103. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  104. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  105. # Load model
  106. check_suffix(weights, '.pt')
  107. model = attempt_load(weights, map_location=device) # load FP32 model
  108. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  109. imgsz = check_img_size(imgsz, s=gs) # check image size
  110. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  111. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  112. # model = nn.DataParallel(model)
  113. # Data
  114. data = check_dataset(data) # check
  115. # Half
  116. half &= device.type != 'cpu' # half precision only supported on CUDA
  117. if half:
  118. model.half()
  119. # Configure
  120. model.eval()
  121. is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset
  122. nc = 1 if single_cls else int(data['nc']) # number of classes
  123. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  124. niou = iouv.numel()
  125. # Dataloader
  126. if not training:
  127. if device.type != 'cpu':
  128. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  129. task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  130. dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True,
  131. prefix=colorstr(f'{task}: '))[0]
  132. seen = 0
  133. confusion_matrix = ConfusionMatrix(nc=nc)
  134. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  135. class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
  136. s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  137. dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  138. loss = torch.zeros(3, device=device)
  139. jdict, stats, ap, ap_class = [], [], [], []
  140. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  141. t1 = time_sync()
  142. img = img.to(device, non_blocking=True)
  143. img = img.half() if half else img.float() # uint8 to fp16/32
  144. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  145. targets = targets.to(device)
  146. nb, _, height, width = img.shape # batch size, channels, height, width
  147. t2 = time_sync()
  148. dt[0] += t2 - t1
  149. # Run model
  150. out, train_out = model(img, augment=augment) # inference and training outputs
  151. dt[1] += time_sync() - t2
  152. # Compute loss
  153. if compute_loss:
  154. loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
  155. # Run NMS
  156. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  157. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  158. t3 = time_sync()
  159. out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
  160. dt[2] += time_sync() - t3
  161. # Statistics per image
  162. for si, pred in enumerate(out):
  163. labels = targets[targets[:, 0] == si, 1:]
  164. nl = len(labels)
  165. tcls = labels[:, 0].tolist() if nl else [] # target class
  166. path, shape = Path(paths[si]), shapes[si][0]
  167. seen += 1
  168. if len(pred) == 0:
  169. if nl:
  170. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  171. continue
  172. # Predictions
  173. if single_cls:
  174. pred[:, 5] = 0
  175. predn = pred.clone()
  176. scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
  177. # Evaluate
  178. if nl:
  179. tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
  180. scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
  181. labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
  182. correct = process_batch(predn, labelsn, iouv)
  183. if plots:
  184. confusion_matrix.process_batch(predn, labelsn)
  185. else:
  186. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
  187. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls)
  188. # Save/log
  189. if save_txt:
  190. save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
  191. if save_json:
  192. save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
  193. callbacks.run('on_val_image_end', pred, predn, path, names, img[si])
  194. # Plot images
  195. if plots and batch_i < 3:
  196. f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
  197. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  198. f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
  199. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  200. # Compute statistics
  201. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  202. if len(stats) and stats[0].any():
  203. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  204. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  205. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  206. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  207. else:
  208. nt = torch.zeros(1)
  209. # Print results
  210. pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
  211. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  212. # Print results per class
  213. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  214. for i, c in enumerate(ap_class):
  215. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  216. # Print speeds
  217. t = tuple(x / seen * 1E3 for x in dt) # speeds per image
  218. if not training:
  219. shape = (batch_size, 3, imgsz, imgsz)
  220. print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
  221. # Plots
  222. if plots:
  223. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  224. callbacks.run('on_val_end')
  225. # Save JSON
  226. if save_json and len(jdict):
  227. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  228. anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
  229. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  230. print(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
  231. with open(pred_json, 'w') as f:
  232. json.dump(jdict, f)
  233. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  234. check_requirements(['pycocotools'])
  235. from pycocotools.coco import COCO
  236. from pycocotools.cocoeval import COCOeval
  237. anno = COCO(anno_json) # init annotations api
  238. pred = anno.loadRes(pred_json) # init predictions api
  239. eval = COCOeval(anno, pred, 'bbox')
  240. if is_coco:
  241. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  242. eval.evaluate()
  243. eval.accumulate()
  244. eval.summarize()
  245. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  246. except Exception as e:
  247. print(f'pycocotools unable to run: {e}')
  248. # Return results
  249. model.float() # for training
  250. if not training:
  251. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  252. print(f"Results saved to {colorstr('bold', save_dir)}{s}")
  253. maps = np.zeros(nc) + map
  254. for i, c in enumerate(ap_class):
  255. maps[c] = ap[i]
  256. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  257. def parse_opt():
  258. parser = argparse.ArgumentParser()
  259. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  260. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  261. parser.add_argument('--batch-size', type=int, default=32, help='batch size')
  262. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  263. parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
  264. parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
  265. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  266. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  267. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  268. parser.add_argument('--augment', action='store_true', help='augmented inference')
  269. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  270. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  271. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  272. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  273. parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
  274. parser.add_argument('--project', default='runs/val', help='save to project/name')
  275. parser.add_argument('--name', default='exp', help='save to project/name')
  276. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  277. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  278. opt = parser.parse_args()
  279. opt.save_json |= opt.data.endswith('coco.yaml')
  280. opt.save_txt |= opt.save_hybrid
  281. opt.data = check_yaml(opt.data) # check YAML
  282. print_args(FILE.stem, opt)
  283. return opt
  284. def main(opt):
  285. set_logging()
  286. check_requirements(exclude=('tensorboard', 'thop'))
  287. if opt.task in ('train', 'val', 'test'): # run normally
  288. run(**vars(opt))
  289. elif opt.task == 'speed': # speed benchmarks
  290. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  291. run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
  292. save_json=False, plots=False)
  293. elif opt.task == 'study': # run over a range of settings and save/plot
  294. # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
  295. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  296. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  297. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  298. y = [] # y axis
  299. for i in x: # img-size
  300. print(f'\nRunning {f} point {i}...')
  301. r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
  302. iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
  303. y.append(r + t) # results and times
  304. np.savetxt(f, y, fmt='%10.4g') # save
  305. os.system('zip -r study.zip study_*.txt')
  306. plot_val_study(x=x) # plot
  307. if __name__ == "__main__":
  308. opt = parse_opt()
  309. main(opt)