您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

184 行
9.0KB

  1. import argparse
  2. import time
  3. from pathlib import Path
  4. import cv2
  5. import torch
  6. import torch.backends.cudnn as cudnn
  7. from numpy import random
  8. from models.experimental import attempt_load
  9. from utils.datasets import LoadStreams, LoadImages
  10. from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
  11. scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
  12. from utils.plots import colors, plot_one_box
  13. from utils.torch_utils import select_device, load_classifier, time_synchronized
  14. def detect(opt):
  15. source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
  16. save_img = not opt.nosave and not source.endswith('.txt') # save inference images
  17. webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
  18. ('rtsp://', 'rtmp://', 'http://', 'https://'))
  19. # Directories
  20. save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
  21. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  22. # Initialize
  23. set_logging()
  24. device = select_device(opt.device)
  25. half = device.type != 'cpu' # half precision only supported on CUDA
  26. # Load model
  27. model = attempt_load(weights, map_location=device) # load FP32 model
  28. stride = int(model.stride.max()) # model stride
  29. imgsz = check_img_size(imgsz, s=stride) # check img_size
  30. names = model.module.names if hasattr(model, 'module') else model.names # get class names
  31. if half:
  32. model.half() # to FP16
  33. # Second-stage classifier
  34. classify = False
  35. if classify:
  36. modelc = load_classifier(name='resnet101', n=2) # initialize
  37. modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
  38. # Set Dataloader
  39. vid_path, vid_writer = None, None
  40. if webcam:
  41. view_img = check_imshow()
  42. cudnn.benchmark = True # set True to speed up constant image size inference
  43. dataset = LoadStreams(source, img_size=imgsz, stride=stride)
  44. else:
  45. dataset = LoadImages(source, img_size=imgsz, stride=stride)
  46. # Run inference
  47. if device.type != 'cpu':
  48. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  49. t0 = time.time()
  50. for path, img, im0s, vid_cap in dataset:
  51. img = torch.from_numpy(img).to(device)
  52. img = img.half() if half else img.float() # uint8 to fp16/32
  53. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  54. if img.ndimension() == 3:
  55. img = img.unsqueeze(0)
  56. # Inference
  57. t1 = time_synchronized()
  58. pred = model(img, augment=opt.augment)[0]
  59. # Apply NMS
  60. pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
  61. t2 = time_synchronized()
  62. # Apply Classifier
  63. if classify:
  64. pred = apply_classifier(pred, modelc, img, im0s)
  65. # Process detections
  66. for i, det in enumerate(pred): # detections per image
  67. if webcam: # batch_size >= 1
  68. p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
  69. else:
  70. p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
  71. p = Path(p) # to Path
  72. save_path = str(save_dir / p.name) # img.jpg
  73. txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
  74. s += '%gx%g ' % img.shape[2:] # print string
  75. gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
  76. if len(det):
  77. # Rescale boxes from img_size to im0 size
  78. det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
  79. # Print results
  80. for c in det[:, -1].unique():
  81. n = (det[:, -1] == c).sum() # detections per class
  82. s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
  83. # Write results
  84. for *xyxy, conf, cls in reversed(det):
  85. if save_txt: # Write to file
  86. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  87. line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
  88. with open(txt_path + '.txt', 'a') as f:
  89. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  90. if save_img or opt.save_crop or view_img: # Add bbox to image
  91. c = int(cls) # integer class
  92. label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
  93. plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness)
  94. if opt.save_crop:
  95. save_one_box(xyxy, im0s, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
  96. # Print time (inference + NMS)
  97. print(f'{s}Done. ({t2 - t1:.3f}s)')
  98. # Stream results
  99. if view_img:
  100. cv2.imshow(str(p), im0)
  101. cv2.waitKey(1) # 1 millisecond
  102. # Save results (image with detections)
  103. if save_img:
  104. if dataset.mode == 'image':
  105. cv2.imwrite(save_path, im0)
  106. else: # 'video' or 'stream'
  107. if vid_path != save_path: # new video
  108. vid_path = save_path
  109. if isinstance(vid_writer, cv2.VideoWriter):
  110. vid_writer.release() # release previous video writer
  111. if vid_cap: # video
  112. fps = vid_cap.get(cv2.CAP_PROP_FPS)
  113. w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  114. h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  115. else: # stream
  116. fps, w, h = 30, im0.shape[1], im0.shape[0]
  117. save_path += '.mp4'
  118. vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
  119. vid_writer.write(im0)
  120. if save_txt or save_img:
  121. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  122. print(f"Results saved to {save_dir}{s}")
  123. print(f'Done. ({time.time() - t0:.3f}s)')
  124. if __name__ == '__main__':
  125. parser = argparse.ArgumentParser()
  126. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  127. parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
  128. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  129. parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
  130. parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
  131. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  132. parser.add_argument('--view-img', action='store_true', help='display results')
  133. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  134. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  135. parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
  136. parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
  137. parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
  138. parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
  139. parser.add_argument('--augment', action='store_true', help='augmented inference')
  140. parser.add_argument('--update', action='store_true', help='update all models')
  141. parser.add_argument('--project', default='runs/detect', help='save results to project/name')
  142. parser.add_argument('--name', default='exp', help='save results to project/name')
  143. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  144. parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
  145. parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
  146. parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
  147. opt = parser.parse_args()
  148. print(opt)
  149. check_requirements(exclude=('pycocotools', 'thop'))
  150. with torch.no_grad():
  151. if opt.update: # update all models (to fix SourceChangeWarning)
  152. for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
  153. detect(opt=opt)
  154. strip_optimizer(opt.weights)
  155. else:
  156. detect(opt=opt)