|
- import glob
- import math
- import os
- import random
- import shutil
- import subprocess
- import time
- from copy import copy
- from pathlib import Path
- from sys import platform
-
- import cv2
- import matplotlib
- import matplotlib.pyplot as plt
- import numpy as np
- import torch
- import torch.nn as nn
- import torchvision
- import yaml
- from scipy.signal import butter, filtfilt
- from tqdm import tqdm
-
- from . import torch_utils, google_utils # torch_utils, google_utils
-
- # Set printoptions
- torch.set_printoptions(linewidth=320, precision=5, profile='long')
- np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
- matplotlib.rc('font', **{'size': 11})
-
- # Prevent OpenCV from multithreading (to use PyTorch DataLoader)
- cv2.setNumThreads(0)
-
-
- def init_seeds(seed=0):
- random.seed(seed)
- np.random.seed(seed)
- torch_utils.init_seeds(seed=seed)
-
- def get_latest_run(search_dir = './runs'):
- # get path to most recent 'last.pt' in run dirs
- # assumes most recently saved 'last.pt' is the desired weights to --resume from
- last_list = glob.glob(f'{search_dir}/**/last.pt', recursive=True)
- latest = max(last_list, key = os.path.getctime)
- return latest
-
- def check_git_status():
- # Suggest 'git pull' if repo is out of date
- if platform in ['linux', 'darwin']:
- s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8')
- if 'Your branch is behind' in s:
- print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n')
-
-
- def check_img_size(img_size, s=32):
- # Verify img_size is a multiple of stride s
- if img_size % s != 0:
- print('WARNING: --img-size %g must be multiple of max stride %g' % (img_size, s))
- return make_divisible(img_size, s) # nearest gs-multiple
-
-
- def check_best_possible_recall(dataset, anchors, thr=4.0, imgsz=640):
- # Check best possible recall of dataset with current anchors
- shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
- wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh
- ratio = wh[:, None] / anchors.view(-1, 2).cpu()[None] # ratio
- m = torch.max(ratio, 1. / ratio).max(2)[0] # max ratio
- bpr = (m.min(1)[0] < thr).float().mean() # best possible recall
- mr = (m < thr).float().mean() # match ratio
- print(('AutoAnchor labels:' + '%10s' * 6) % ('n', 'mean', 'min', 'max', 'matching', 'recall'))
- print((' ' + '%10.4g' * 6) % (wh.shape[0], wh.mean(), wh.min(), wh.max(), mr, bpr))
-
- assert bpr > 0.9, 'Best possible recall %.3g (BPR) below 0.9 threshold. Training cancelled. ' \
- 'Compute new anchors with utils.utils.kmeans_anchors() and update model before training.' % bpr
-
-
- def check_file(file):
- # Searches for file if not found locally
- if os.path.isfile(file):
- return file
- else:
- files = glob.glob('./**/' + file, recursive=True) # find file
- assert len(files), 'File Not Found: %s' % file # assert file was found
- return files[0] # return first file if multiple found
-
-
- def make_divisible(x, divisor):
- # Returns x evenly divisble by divisor
- return math.ceil(x / divisor) * divisor
-
-
- def labels_to_class_weights(labels, nc=80):
- # Get class weights (inverse frequency) from training labels
- if labels[0] is None: # no labels loaded
- return torch.Tensor()
-
- labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
- classes = labels[:, 0].astype(np.int) # labels = [class xywh]
- weights = np.bincount(classes, minlength=nc) # occurences per class
-
- # Prepend gridpoint count (for uCE trianing)
- # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
- # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
-
- weights[weights == 0] = 1 # replace empty bins with 1
- weights = 1 / weights # number of targets per class
- weights /= weights.sum() # normalize
- return torch.from_numpy(weights)
-
-
- def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
- # Produces image weights based on class mAPs
- n = len(labels)
- class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)])
- image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
- # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
- return image_weights
-
-
- def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
- # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
- # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
- # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
- # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
- # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
- x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
- 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
- 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
- return x
-
-
- def xyxy2xywh(x):
- # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
- y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
- y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
- y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
- y[:, 2] = x[:, 2] - x[:, 0] # width
- y[:, 3] = x[:, 3] - x[:, 1] # height
- return y
-
-
- def xywh2xyxy(x):
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
- y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
- return y
-
-
- def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
- # Rescale coords (xyxy) from img1_shape to img0_shape
- if ratio_pad is None: # calculate from img0_shape
- gain = max(img1_shape) / max(img0_shape) # gain = old / new
- pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
- else:
- gain = ratio_pad[0][0]
- pad = ratio_pad[1]
-
- coords[:, [0, 2]] -= pad[0] # x padding
- coords[:, [1, 3]] -= pad[1] # y padding
- coords[:, :4] /= gain
- clip_coords(coords, img0_shape)
- return coords
-
-
- def clip_coords(boxes, img_shape):
- # Clip bounding xyxy bounding boxes to image shape (height, width)
- boxes[:, 0].clamp_(0, img_shape[1]) # x1
- boxes[:, 1].clamp_(0, img_shape[0]) # y1
- boxes[:, 2].clamp_(0, img_shape[1]) # x2
- boxes[:, 3].clamp_(0, img_shape[0]) # y2
-
-
- def ap_per_class(tp, conf, pred_cls, target_cls):
- """ Compute the average precision, given the recall and precision curves.
- Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
- # Arguments
- tp: True positives (nparray, nx1 or nx10).
- conf: Objectness value from 0-1 (nparray).
- pred_cls: Predicted object classes (nparray).
- target_cls: True object classes (nparray).
- # Returns
- The average precision as computed in py-faster-rcnn.
- """
-
- # Sort by objectness
- i = np.argsort(-conf)
- tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
-
- # Find unique classes
- unique_classes = np.unique(target_cls)
-
- # Create Precision-Recall curve and compute AP for each class
- pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
- s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
- ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
- for ci, c in enumerate(unique_classes):
- i = pred_cls == c
- n_gt = (target_cls == c).sum() # Number of ground truth objects
- n_p = i.sum() # Number of predicted objects
-
- if n_p == 0 or n_gt == 0:
- continue
- else:
- # Accumulate FPs and TPs
- fpc = (1 - tp[i]).cumsum(0)
- tpc = tp[i].cumsum(0)
-
- # Recall
- recall = tpc / (n_gt + 1e-16) # recall curve
- r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
-
- # Precision
- precision = tpc / (tpc + fpc) # precision curve
- p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
-
- # AP from recall-precision curve
- for j in range(tp.shape[1]):
- ap[ci, j] = compute_ap(recall[:, j], precision[:, j])
-
- # Plot
- # fig, ax = plt.subplots(1, 1, figsize=(5, 5))
- # ax.plot(recall, precision)
- # ax.set_xlabel('Recall')
- # ax.set_ylabel('Precision')
- # ax.set_xlim(0, 1.01)
- # ax.set_ylim(0, 1.01)
- # fig.tight_layout()
- # fig.savefig('PR_curve.png', dpi=300)
-
- # Compute F1 score (harmonic mean of precision and recall)
- f1 = 2 * p * r / (p + r + 1e-16)
-
- return p, r, ap, f1, unique_classes.astype('int32')
-
-
- def compute_ap(recall, precision):
- """ Compute the average precision, given the recall and precision curves.
- Source: https://github.com/rbgirshick/py-faster-rcnn.
- # Arguments
- recall: The recall curve (list).
- precision: The precision curve (list).
- # Returns
- The average precision as computed in py-faster-rcnn.
- """
-
- # Append sentinel values to beginning and end
- mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)]))
- mpre = np.concatenate(([0.], precision, [0.]))
-
- # Compute the precision envelope
- mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
-
- # Integrate area under curve
- method = 'interp' # methods: 'continuous', 'interp'
- if method == 'interp':
- x = np.linspace(0, 1, 101) # 101-point interp (COCO)
- ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
- else: # 'continuous'
- i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
-
- return ap
-
-
- def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
- # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
- box2 = box2.t()
-
- # Get the coordinates of bounding boxes
- if x1y1x2y2: # x1, y1, x2, y2 = box1
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
- else: # transform from xywh to xyxy
- b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
- b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
- b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
- b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
-
- # Intersection area
- inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
- (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
-
- # Union Area
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
- union = (w1 * h1 + 1e-16) + w2 * h2 - inter
-
- iou = inter / union # iou
- if GIoU or DIoU or CIoU:
- cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
- ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
- if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
- c_area = cw * ch + 1e-16 # convex area
- return iou - (c_area - union) / c_area # GIoU
- if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
- # convex diagonal squared
- c2 = cw ** 2 + ch ** 2 + 1e-16
- # centerpoint distance squared
- rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4
- if DIoU:
- return iou - rho2 / c2 # DIoU
- elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
- v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
- with torch.no_grad():
- alpha = v / (1 - iou + v)
- return iou - (rho2 / c2 + v * alpha) # CIoU
-
- return iou
-
-
- def box_iou(box1, box2):
- # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
- """
- Return intersection-over-union (Jaccard index) of boxes.
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
- Arguments:
- box1 (Tensor[N, 4])
- box2 (Tensor[M, 4])
- Returns:
- iou (Tensor[N, M]): the NxM matrix containing the pairwise
- IoU values for every element in boxes1 and boxes2
- """
-
- def box_area(box):
- # box = 4xn
- return (box[2] - box[0]) * (box[3] - box[1])
-
- area1 = box_area(box1.t())
- area2 = box_area(box2.t())
-
- # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
- return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
-
-
- def wh_iou(wh1, wh2):
- # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
- wh1 = wh1[:, None] # [N,1,2]
- wh2 = wh2[None] # [1,M,2]
- inter = torch.min(wh1, wh2).prod(2) # [N,M]
- return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
-
-
- class FocalLoss(nn.Module):
- # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
- def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
- super(FocalLoss, self).__init__()
- self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
- self.gamma = gamma
- self.alpha = alpha
- self.reduction = loss_fcn.reduction
- self.loss_fcn.reduction = 'none' # required to apply FL to each element
-
- def forward(self, pred, true):
- loss = self.loss_fcn(pred, true)
- # p_t = torch.exp(-loss)
- # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
-
- # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
- pred_prob = torch.sigmoid(pred) # prob from logits
- p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
- alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
- modulating_factor = (1.0 - p_t) ** self.gamma
- loss *= alpha_factor * modulating_factor
-
- if self.reduction == 'mean':
- return loss.mean()
- elif self.reduction == 'sum':
- return loss.sum()
- else: # 'none'
- return loss
-
-
- def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
- # return positive, negative label smoothing BCE targets
- return 1.0 - 0.5 * eps, 0.5 * eps
-
-
- class BCEBlurWithLogitsLoss(nn.Module):
- # BCEwithLogitLoss() with reduced missing label effects.
- def __init__(self, alpha=0.05):
- super(BCEBlurWithLogitsLoss, self).__init__()
- self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
- self.alpha = alpha
-
- def forward(self, pred, true):
- loss = self.loss_fcn(pred, true)
- pred = torch.sigmoid(pred) # prob from logits
- dx = pred - true # reduce only missing label effects
- # dx = (pred - true).abs() # reduce missing label and false label effects
- alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
- loss *= alpha_factor
- return loss.mean()
-
-
- def compute_loss(p, targets, model): # predictions, targets, model
- ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
- lcls, lbox, lobj = ft([0]), ft([0]), ft([0])
- tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
- h = model.hyp # hyperparameters
- red = 'mean' # Loss reduction (sum or mean)
-
- # Define criteria
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red)
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red)
-
- # class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
- cp, cn = smooth_BCE(eps=0.0)
-
- # focal loss
- g = h['fl_gamma'] # focal loss gamma
- if g > 0:
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
-
- # per output
- nt = 0 # targets
- for i, pi in enumerate(p): # layer index, layer predictions
- b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
- tobj = torch.zeros_like(pi[..., 0]) # target obj
-
- nb = b.shape[0] # number of targets
- if nb:
- nt += nb # cumulative targets
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
-
- # GIoU
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
- pbox = torch.cat((pxy, pwh), 1) # predicted box
- giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou(prediction, target)
- lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean() # giou loss
-
- # Obj
- tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio
-
- # Class
- if model.nc > 1: # cls loss (only if multiple classes)
- t = torch.full_like(ps[:, 5:], cn) # targets
- t[range(nb), tcls[i]] = cp
- lcls += BCEcls(ps[:, 5:], t) # BCE
-
- # Append targets to text file
- # with open('targets.txt', 'a') as file:
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
-
- lobj += BCEobj(pi[..., 4], tobj) # obj loss
-
- lbox *= h['giou']
- lobj *= h['obj']
- lcls *= h['cls']
- bs = tobj.shape[0] # batch size
- if red == 'sum':
- g = 3.0 # loss gain
- lobj *= g / bs
- if nt:
- lcls *= g / nt / model.nc
- lbox *= g / nt
-
- loss = lbox + lobj + lcls
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
-
-
- def build_targets(p, targets, model):
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
- det = model.module.model[-1] if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) \
- else model.model[-1] # Detect() module
- na, nt = det.na, targets.shape[0] # number of anchors, targets
- tcls, tbox, indices, anch = [], [], [], []
- gain = torch.ones(6, device=targets.device) # normalized to gridspace gain
- off = torch.tensor([[1, 0], [0, 1], [-1, 0], [0, -1]], device=targets.device).float() # overlap offsets
- at = torch.arange(na).view(na, 1).repeat(1, nt) # anchor tensor, same as .repeat_interleave(nt)
-
- style = 'rect4'
- for i in range(det.nl):
- anchors = det.anchors[i]
- gain[2:] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
-
- # Match targets to anchors
- a, t, offsets = [], targets * gain, 0
- if nt:
- r = t[None, :, 4:6] / anchors[:, None] # wh ratio
- j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2))
- a, t = at[j], t.repeat(na, 1, 1)[j] # filter
-
- # overlaps
- gxy = t[:, 2:4] # grid xy
- z = torch.zeros_like(gxy)
- if style == 'rect2':
- g = 0.2 # offset
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
- a, t = torch.cat((a, a[j], a[k]), 0), torch.cat((t, t[j], t[k]), 0)
- offsets = torch.cat((z, z[j] + off[0], z[k] + off[1]), 0) * g
-
- elif style == 'rect4':
- g = 0.5 # offset
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
- l, m = ((gxy % 1. > (1 - g)) & (gxy < (gain[[2, 3]] - 1.))).T
- a, t = torch.cat((a, a[j], a[k], a[l], a[m]), 0), torch.cat((t, t[j], t[k], t[l], t[m]), 0)
- offsets = torch.cat((z, z[j] + off[0], z[k] + off[1], z[l] + off[2], z[m] + off[3]), 0) * g
-
- # Define
- b, c = t[:, :2].long().T # image, class
- gxy = t[:, 2:4] # grid xy
- gwh = t[:, 4:6] # grid wh
- gij = (gxy - offsets).long()
- gi, gj = gij.T # grid xy indices
-
- # Append
- indices.append((b, a, gj, gi)) # image, anchor, grid indices
- tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
- anch.append(anchors[a]) # anchors
- tcls.append(c) # class
-
- return tcls, tbox, indices, anch
-
-
- def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, classes=None, agnostic=False):
- """
- Performs Non-Maximum Suppression on inference results
- Returns detections with shape:
- nx6 (x1, y1, x2, y2, conf, cls)
- """
- if prediction.dtype is torch.float16:
- prediction = prediction.float() # to FP32
-
- nc = prediction[0].shape[1] - 5 # number of classes
- xc = prediction[..., 4] > conf_thres # candidates
-
- # Settings
- min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
- max_det = 300 # maximum number of detections per image
- time_limit = 10.0 # seconds to quit after
- redundant = True # require redundant detections
- fast |= conf_thres > 0.001 # fast mode
- multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
- if fast:
- merge = False
- else:
- merge = True # merge for best mAP (adds 0.5ms/img)
-
- t = time.time()
- output = [None] * prediction.shape[0]
- for xi, x in enumerate(prediction): # image index, image inference
- # Apply constraints
- # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
- x = x[xc[xi]] # confidence
-
- # If none remain process next image
- if not x.shape[0]:
- continue
-
- # Compute conf
- x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
-
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
- box = xywh2xyxy(x[:, :4])
-
- # Detections matrix nx6 (xyxy, conf, cls)
- if multi_label:
- i, j = (x[:, 5:] > conf_thres).nonzero().t()
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
- else: # best class only
- conf, j = x[:, 5:].max(1, keepdim=True)
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
-
- # Filter by class
- if classes:
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
-
- # Apply finite constraint
- # if not torch.isfinite(x).all():
- # x = x[torch.isfinite(x).all(1)]
-
- # If none remain process next image
- n = x.shape[0] # number of boxes
- if not n:
- continue
-
- # Sort by confidence
- # x = x[x[:, 4].argsort(descending=True)]
-
- # Batched NMS
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
- i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
- if i.shape[0] > max_det: # limit detections
- i = i[:max_det]
- if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
- try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
- weights = iou * scores[None] # box weights
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
- if redundant:
- i = i[iou.sum(1) > 1] # require redundancy
- except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
- print(x, i, x.shape, i.shape)
- pass
-
- output[xi] = x[i]
- if (time.time() - t) > time_limit:
- break # time limit exceeded
-
- return output
-
-
- def strip_optimizer(f='weights/best.pt'): # from utils.utils import *; strip_optimizer()
- # Strip optimizer from *.pt files for lighter files (reduced by 1/2 size)
- x = torch.load(f, map_location=torch.device('cpu'))
- x['optimizer'] = None
- torch.save(x, f)
- print('Optimizer stripped from %s' % f)
-
-
- def create_backbone(f='weights/best.pt', s='weights/backbone.pt'): # from utils.utils import *; create_backbone()
- # create backbone 's' from 'f'
- device = torch.device('cpu')
- x = torch.load(f, map_location=device)
- torch.save(x, s) # update model if SourceChangeWarning
- x = torch.load(s, map_location=device)
-
- x['optimizer'] = None
- x['training_results'] = None
- x['epoch'] = -1
- for p in x['model'].parameters():
- p.requires_grad = True
- torch.save(x, s)
- print('%s modified for backbone use and saved as %s' % (f, s))
-
-
- def coco_class_count(path='../coco/labels/train2014/'):
- # Histogram of occurrences per class
- nc = 80 # number classes
- x = np.zeros(nc, dtype='int32')
- files = sorted(glob.glob('%s/*.*' % path))
- for i, file in enumerate(files):
- labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
- x += np.bincount(labels[:, 0].astype('int32'), minlength=nc)
- print(i, len(files))
-
-
- def coco_only_people(path='../coco/labels/train2017/'): # from utils.utils import *; coco_only_people()
- # Find images with only people
- files = sorted(glob.glob('%s/*.*' % path))
- for i, file in enumerate(files):
- labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
- if all(labels[:, 0] == 0):
- print(labels.shape[0], file)
-
-
- def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random()
- # crops images into random squares up to scale fraction
- # WARNING: overwrites images!
- for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
- img = cv2.imread(file) # BGR
- if img is not None:
- h, w = img.shape[:2]
-
- # create random mask
- a = 30 # minimum size (pixels)
- mask_h = random.randint(a, int(max(a, h * scale))) # mask height
- mask_w = mask_h # mask width
-
- # box
- xmin = max(0, random.randint(0, w) - mask_w // 2)
- ymin = max(0, random.randint(0, h) - mask_h // 2)
- xmax = min(w, xmin + mask_w)
- ymax = min(h, ymin + mask_h)
-
- # apply random color mask
- cv2.imwrite(file, img[ymin:ymax, xmin:xmax])
-
-
- def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
- # Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels()
- if os.path.exists('new/'):
- shutil.rmtree('new/') # delete output folder
- os.makedirs('new/') # make new output folder
- os.makedirs('new/labels/')
- os.makedirs('new/images/')
- for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
- with open(file, 'r') as f:
- labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
- i = labels[:, 0] == label_class
- if any(i):
- img_file = file.replace('labels', 'images').replace('txt', 'jpg')
- labels[:, 0] = 0 # reset class to 0
- with open('new/images.txt', 'a') as f: # add image to dataset list
- f.write(img_file + '\n')
- with open('new/labels/' + Path(file).name, 'a') as f: # write label
- for l in labels[i]:
- f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l))
- shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
-
-
- def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20, gen=1000):
- """ Creates kmeans-evolved anchors from training dataset
-
- Arguments:
- path: path to dataset *.yaml
- n: number of anchors
- img_size: (min, max) image size used for multi-scale training (can be same values)
- thr: IoU threshold hyperparameter used for training (0.0 - 1.0)
- gen: generations to evolve anchors using genetic algorithm
-
- Return:
- k: kmeans evolved anchors
-
- Usage:
- from utils.utils import *; _ = kmean_anchors()
- """
-
- from utils.datasets import LoadImagesAndLabels
-
- def print_results(k):
- k = k[np.argsort(k.prod(1))] # sort small to large
- iou = wh_iou(wh, torch.Tensor(k))
- max_iou = iou.max(1)[0]
- bpr, aat = (max_iou > thr).float().mean(), (iou > thr).float().mean() * n # best possible recall, anch > thr
-
- # thr = 5.0
- # r = wh[:, None] / k[None]
- # ar = torch.max(r, 1. / r).max(2)[0]
- # max_ar = ar.min(1)[0]
- # bpr, aat = (max_ar < thr).float().mean(), (ar < thr).float().mean() * n # best possible recall, anch > thr
-
- print('%.2f iou_thr: %.3f best possible recall, %.2f anchors > thr' % (thr, bpr, aat))
- print('n=%g, img_size=%s, IoU_all=%.3f/%.3f-mean/best, IoU>thr=%.3f-mean: ' %
- (n, img_size, iou.mean(), max_iou.mean(), iou[iou > thr].mean()), end='')
- for i, x in enumerate(k):
- print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
- return k
-
- def fitness(k): # mutation fitness
- iou = wh_iou(wh, torch.Tensor(k)) # iou
- max_iou = iou.max(1)[0]
- return (max_iou * (max_iou > thr).float()).mean() # product
-
- # def fitness_ratio(k): # mutation fitness
- # # wh(5316,2), k(9,2)
- # r = wh[:, None] / k[None]
- # x = torch.max(r, 1. / r).max(2)[0]
- # m = x.min(1)[0]
- # return 1. / (m * (m < 5).float()).mean() # product
-
- # Get label wh
- wh = []
- with open(path) as f:
- data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
- dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
- nr = 1 if img_size[0] == img_size[1] else 3 # number augmentation repetitions
- for s, l in zip(dataset.shapes, dataset.labels):
- # wh.append(l[:, 3:5] * (s / s.max())) # image normalized to letterbox normalized wh
- wh.append(l[:, 3:5] * s) # image normalized to pixels
- wh = np.concatenate(wh, 0).repeat(nr, axis=0) # augment 3x
- # wh *= np.random.uniform(img_size[0], img_size[1], size=(wh.shape[0], 1)) # normalized to pixels (multi-scale)
- wh = wh[(wh > 2.0).all(1)] # remove below threshold boxes (< 2 pixels wh)
-
- # Kmeans calculation
- from scipy.cluster.vq import kmeans
- print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
- s = wh.std(0) # sigmas for whitening
- k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
- k *= s
- wh = torch.Tensor(wh)
- k = print_results(k)
-
- # # Plot
- # k, d = [None] * 20, [None] * 20
- # for i in tqdm(range(1, 21)):
- # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7))
- # ax = ax.ravel()
- # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
- # ax[0].hist(wh[wh[:, 0]<100, 0],400)
- # ax[1].hist(wh[wh[:, 1]<100, 1],400)
- # fig.tight_layout()
- # fig.savefig('wh.png', dpi=200)
-
- # Evolve
- npr = np.random
- f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
- for _ in tqdm(range(gen), desc='Evolving anchors'):
- v = np.ones(sh)
- while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
- v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
- kg = (k.copy() * v).clip(min=2.0)
- fg = fitness(kg)
- if fg > f:
- f, k = fg, kg.copy()
- print_results(k)
- k = print_results(k)
- return k
-
-
- def print_mutation(hyp, results, bucket=''):
- # Print mutation results to evolve.txt (for use with train.py --evolve)
- a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
- b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
- c = '%10.4g' * len(results) % results # results (P, R, mAP, F1, test_loss)
- print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
-
- if bucket:
- os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt
-
- with open('evolve.txt', 'a') as f: # append result
- f.write(c + b + '\n')
- x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
- np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness
-
- if bucket:
- os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt
-
-
- def apply_classifier(x, model, img, im0):
- # applies a second stage classifier to yolo outputs
- im0 = [im0] if isinstance(im0, np.ndarray) else im0
- for i, d in enumerate(x): # per image
- if d is not None and len(d):
- d = d.clone()
-
- # Reshape and pad cutouts
- b = xyxy2xywh(d[:, :4]) # boxes
- b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
- b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
- d[:, :4] = xywh2xyxy(b).long()
-
- # Rescale boxes from img_size to im0 size
- scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
-
- # Classes
- pred_cls1 = d[:, 5].long()
- ims = []
- for j, a in enumerate(d): # per item
- cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
- im = cv2.resize(cutout, (224, 224)) # BGR
- # cv2.imwrite('test%i.jpg' % j, cutout)
-
- im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
- im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
- im /= 255.0 # 0 - 255 to 0.0 - 1.0
- ims.append(im)
-
- pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
- x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
-
- return x
-
-
- def fitness(x):
- # Returns fitness (for use with results.txt or evolve.txt)
- w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
- return (x[:, :4] * w).sum(1)
-
-
- def output_to_target(output, width, height):
- """
- Convert a YOLO model output to target format
- [batch_id, class_id, x, y, w, h, conf]
- """
- if isinstance(output, torch.Tensor):
- output = output.cpu().numpy()
-
- targets = []
- for i, o in enumerate(output):
- if o is not None:
- for pred in o:
- box = pred[:4]
- w = (box[2] - box[0]) / width
- h = (box[3] - box[1]) / height
- x = box[0] / width + w / 2
- y = box[1] / height + h / 2
- conf = pred[4]
- cls = int(pred[5])
-
- targets.append([i, cls, x, y, w, h, conf])
-
- return np.array(targets)
-
-
- # Plotting functions ---------------------------------------------------------------------------------------------------
- def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
- # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
- def butter_lowpass(cutoff, fs, order):
- nyq = 0.5 * fs
- normal_cutoff = cutoff / nyq
- b, a = butter(order, normal_cutoff, btype='low', analog=False)
- return b, a
-
- b, a = butter_lowpass(cutoff, fs, order=order)
- return filtfilt(b, a, data) # forward-backward filter
-
-
- def plot_one_box(x, img, color=None, label=None, line_thickness=None):
- # Plots one bounding box on image img
- tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
- color = color or [random.randint(0, 255) for _ in range(3)]
- c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
- cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
- if label:
- tf = max(tl - 1, 1) # font thickness
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
- c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
- cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
- cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
-
-
- def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
- # Compares the two methods for width-height anchor multiplication
- # https://github.com/ultralytics/yolov3/issues/168
- x = np.arange(-4.0, 4.0, .1)
- ya = np.exp(x)
- yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
-
- fig = plt.figure(figsize=(6, 3), dpi=150)
- plt.plot(x, ya, '.-', label='yolo method')
- plt.plot(x, yb ** 2, '.-', label='^2 power method')
- plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
- plt.xlim(left=-4, right=4)
- plt.ylim(bottom=0, top=6)
- plt.xlabel('input')
- plt.ylabel('output')
- plt.legend()
- fig.tight_layout()
- fig.savefig('comparison.png', dpi=200)
-
-
- def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
- tl = 3 # line thickness
- tf = max(tl - 1, 1) # font thickness
- if os.path.isfile(fname): # do not overwrite
- return None
-
- if isinstance(images, torch.Tensor):
- images = images.cpu().float().numpy()
-
- if isinstance(targets, torch.Tensor):
- targets = targets.cpu().numpy()
-
- # un-normalise
- if np.max(images[0]) <= 1:
- images *= 255
-
- bs, _, h, w = images.shape # batch size, _, height, width
- bs = min(bs, max_subplots) # limit plot images
- ns = np.ceil(bs ** 0.5) # number of subplots (square)
-
- # Check if we should resize
- scale_factor = max_size / max(h, w)
- if scale_factor < 1:
- h = math.ceil(scale_factor * h)
- w = math.ceil(scale_factor * w)
-
- # Empty array for output
- mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)
-
- # Fix class - colour map
- prop_cycle = plt.rcParams['axes.prop_cycle']
- # https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
- hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
- color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']]
-
- for i, img in enumerate(images):
- if i == max_subplots: # if last batch has fewer images than we expect
- break
-
- block_x = int(w * (i // ns))
- block_y = int(h * (i % ns))
-
- img = img.transpose(1, 2, 0)
- if scale_factor < 1:
- img = cv2.resize(img, (w, h))
-
- mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
- if len(targets) > 0:
- image_targets = targets[targets[:, 0] == i]
- boxes = xywh2xyxy(image_targets[:, 2:6]).T
- classes = image_targets[:, 1].astype('int')
- gt = image_targets.shape[1] == 6 # ground truth if no conf column
- conf = None if gt else image_targets[:, 6] # check for confidence presence (gt vs pred)
-
- boxes[[0, 2]] *= w
- boxes[[0, 2]] += block_x
- boxes[[1, 3]] *= h
- boxes[[1, 3]] += block_y
- for j, box in enumerate(boxes.T):
- cls = int(classes[j])
- color = color_lut[cls % len(color_lut)]
- cls = names[cls] if names else cls
- if gt or conf[j] > 0.3: # 0.3 conf thresh
- label = '%s' % cls if gt else '%s %.1f' % (cls, conf[j])
- plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
-
- # Draw image filename labels
- if paths is not None:
- label = os.path.basename(paths[i])[:40] # trim to 40 char
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
- cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
- lineType=cv2.LINE_AA)
-
- # Image border
- cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
-
- if fname is not None:
- mosaic = cv2.resize(mosaic, (int(ns * w * 0.5), int(ns * h * 0.5)), interpolation=cv2.INTER_AREA)
- cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB))
-
- return mosaic
-
-
- def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir='./'):
- # Plot LR simulating training for full epochs
- optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
- y = []
- for _ in range(epochs):
- scheduler.step()
- y.append(optimizer.param_groups[0]['lr'])
- plt.plot(y, '.-', label='LR')
- plt.xlabel('epoch')
- plt.ylabel('LR')
- plt.grid()
- plt.xlim(0, epochs)
- plt.ylim(0)
- plt.tight_layout()
- plt.savefig(os.path.join(save_dir, 'LR.png'), dpi=200)
-
-
- def plot_test_txt(): # from utils.utils import *; plot_test()
- # Plot test.txt histograms
- x = np.loadtxt('test.txt', dtype=np.float32)
- box = xyxy2xywh(x[:, :4])
- cx, cy = box[:, 0], box[:, 1]
-
- fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
- ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
- ax.set_aspect('equal')
- plt.savefig('hist2d.png', dpi=300)
-
- fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
- ax[0].hist(cx, bins=600)
- ax[1].hist(cy, bins=600)
- plt.savefig('hist1d.png', dpi=200)
-
-
- def plot_targets_txt(): # from utils.utils import *; plot_targets_txt()
- # Plot targets.txt histograms
- x = np.loadtxt('targets.txt', dtype=np.float32).T
- s = ['x targets', 'y targets', 'width targets', 'height targets']
- fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
- ax = ax.ravel()
- for i in range(4):
- ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
- ax[i].legend()
- ax[i].set_title(s[i])
- plt.savefig('targets.jpg', dpi=200)
-
-
- def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_study_txt()
- # Plot study.txt generated by test.py
- fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
- ax = ax.ravel()
-
- fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
- for f in ['coco_study/study_coco_yolov5%s.txt' % x for x in ['s', 'm', 'l', 'x']]:
- y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
- x = np.arange(y.shape[1]) if x is None else np.array(x)
- s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
- for i in range(7):
- ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
- ax[i].set_title(s[i])
-
- j = y[3].argmax() + 1
- ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
- label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
-
- ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [33.5, 39.1, 42.5, 45.9, 49., 50.5],
- 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
- ax2.set_xlim(0, 30)
- ax2.set_ylim(25, 50)
- ax2.set_xlabel('GPU Latency (ms)')
- ax2.set_ylabel('COCO AP val')
- ax2.legend(loc='lower right')
- ax2.grid()
- plt.savefig('study_mAP_latency.png', dpi=300)
- plt.savefig(f.replace('.txt', '.png'), dpi=200)
-
-
- def plot_labels(labels, save_dir= '.'):
- # plot dataset labels
- c, b = labels[:, 0], labels[:, 1:].transpose() # classees, boxes
-
- def hist2d(x, y, n=100):
- xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
- hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
- xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
- yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
- return np.log(hist[xidx, yidx])
-
- fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
- ax = ax.ravel()
- ax[0].hist(c, bins=int(c.max() + 1))
- ax[0].set_xlabel('classes')
- ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet')
- ax[1].set_xlabel('x')
- ax[1].set_ylabel('y')
- ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet')
- ax[2].set_xlabel('width')
- ax[2].set_ylabel('height')
- plt.savefig(os.path.join(save_dir,'labels.png'), dpi=200)
-
-
- def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp)
- # Plot hyperparameter evolution results in evolve.txt
- x = np.loadtxt('evolve.txt', ndmin=2)
- f = fitness(x)
- # weights = (f - f.min()) ** 2 # for weighted results
- plt.figure(figsize=(12, 10), tight_layout=True)
- matplotlib.rc('font', **{'size': 8})
- for i, (k, v) in enumerate(hyp.items()):
- y = x[:, i + 7]
- # mu = (y * weights).sum() / weights.sum() # best weighted result
- mu = y[f.argmax()] # best single result
- plt.subplot(4, 5, i + 1)
- plt.plot(mu, f.max(), 'o', markersize=10)
- plt.plot(y, f, '.')
- plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
- print('%15s: %.3g' % (k, mu))
- plt.savefig('evolve.png', dpi=200)
-
-
- def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay()
- # Plot training 'results*.txt', overlaying train and val losses
- s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
- t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
- for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
- n = results.shape[1] # number of rows
- x = range(start, min(stop, n) if stop else n)
- fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
- ax = ax.ravel()
- for i in range(5):
- for j in [i, i + 5]:
- y = results[j, x]
- ax[i].plot(x, y, marker='.', label=s[j])
- # y_smooth = butter_lowpass_filtfilt(y)
- # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
-
- ax[i].set_title(t[i])
- ax[i].legend()
- ax[i].set_ylabel(f) if i == 0 else None # add filename
- fig.savefig(f.replace('.txt', '.png'), dpi=200)
-
-
- def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir= '.'): # from utils.utils import *; plot_results()
- # Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
- fig, ax = plt.subplots(2, 5, figsize=(12, 6))
- ax = ax.ravel()
- s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
- 'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
- if bucket:
- os.system('rm -rf storage.googleapis.com')
- files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
- else:
- files = glob.glob(os.path.join(save_dir,'results*.txt')) + glob.glob('../../Downloads/results*.txt')
- for fi, f in enumerate(files):
- try:
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
- n = results.shape[1] # number of rows
- x = range(start, min(stop, n) if stop else n)
- for i in range(10):
- y = results[i, x]
- if i in [0, 1, 2, 5, 6, 7]:
- y[y == 0] = np.nan # dont show zero loss values
- # y /= y[0] # normalize
- label = labels[fi] if len(labels) else Path(f).stem
- ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
- ax[i].set_title(s[i])
- # if i in [5, 6, 7]: # share train and val loss y axes
- # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
- except:
- print('Warning: Plotting error for %s, skipping file' % f)
-
- fig.tight_layout()
- ax[1].legend()
- fig.savefig('results.png', dpi=200)
|