You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

315 lines
13KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. PyTorch utils
  4. """
  5. import math
  6. import os
  7. import platform
  8. import subprocess
  9. import time
  10. import warnings
  11. from contextlib import contextmanager
  12. from copy import deepcopy
  13. from pathlib import Path
  14. import torch
  15. import torch.distributed as dist
  16. import torch.nn as nn
  17. import torch.nn.functional as F
  18. from utils.general import LOGGER, file_date, git_describe
  19. try:
  20. import thop # for FLOPs computation
  21. except ImportError:
  22. thop = None
  23. # Suppress PyTorch warnings
  24. warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
  25. @contextmanager
  26. def torch_distributed_zero_first(local_rank: int):
  27. # Decorator to make all processes in distributed training wait for each local_master to do something
  28. if local_rank not in [-1, 0]:
  29. dist.barrier(device_ids=[local_rank])
  30. yield
  31. if local_rank == 0:
  32. dist.barrier(device_ids=[0])
  33. def device_count():
  34. # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
  35. assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
  36. try:
  37. cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows
  38. return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
  39. except Exception:
  40. return 0
  41. def select_device(device='', batch_size=0, newline=True):
  42. # device = None or 'cpu' or 0 or '0' or '0,1,2,3'
  43. s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
  44. device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
  45. cpu = device == 'cpu'
  46. mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
  47. if cpu or mps:
  48. os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
  49. elif device: # non-cpu device requested
  50. os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
  51. assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
  52. f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
  53. cuda = not cpu and torch.cuda.is_available()
  54. if cuda:
  55. devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
  56. n = len(devices) # device count
  57. if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
  58. assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
  59. space = ' ' * (len(s) + 1)
  60. for i, d in enumerate(devices):
  61. p = torch.cuda.get_device_properties(i)
  62. s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
  63. elif mps:
  64. s += 'MPS\n'
  65. else:
  66. s += 'CPU\n'
  67. if not newline:
  68. s = s.rstrip()
  69. LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
  70. return torch.device('cuda:0' if cuda else 'mps' if mps else 'cpu')
  71. def time_sync():
  72. # PyTorch-accurate time
  73. if torch.cuda.is_available():
  74. torch.cuda.synchronize()
  75. return time.time()
  76. def profile(input, ops, n=10, device=None):
  77. # YOLOv5 speed/memory/FLOPs profiler
  78. #
  79. # Usage:
  80. # input = torch.randn(16, 3, 640, 640)
  81. # m1 = lambda x: x * torch.sigmoid(x)
  82. # m2 = nn.SiLU()
  83. # profile(input, [m1, m2], n=100) # profile over 100 iterations
  84. results = []
  85. if not isinstance(device, torch.device):
  86. device = select_device(device)
  87. print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
  88. f"{'input':>24s}{'output':>24s}")
  89. for x in input if isinstance(input, list) else [input]:
  90. x = x.to(device)
  91. x.requires_grad = True
  92. for m in ops if isinstance(ops, list) else [ops]:
  93. m = m.to(device) if hasattr(m, 'to') else m # device
  94. m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
  95. tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
  96. try:
  97. flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
  98. except Exception:
  99. flops = 0
  100. try:
  101. for _ in range(n):
  102. t[0] = time_sync()
  103. y = m(x)
  104. t[1] = time_sync()
  105. try:
  106. _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
  107. t[2] = time_sync()
  108. except Exception: # no backward method
  109. # print(e) # for debug
  110. t[2] = float('nan')
  111. tf += (t[1] - t[0]) * 1000 / n # ms per op forward
  112. tb += (t[2] - t[1]) * 1000 / n # ms per op backward
  113. mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
  114. s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
  115. p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
  116. print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
  117. results.append([p, flops, mem, tf, tb, s_in, s_out])
  118. except Exception as e:
  119. print(e)
  120. results.append(None)
  121. torch.cuda.empty_cache()
  122. return results
  123. def is_parallel(model):
  124. # Returns True if model is of type DP or DDP
  125. return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
  126. def de_parallel(model):
  127. # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
  128. return model.module if is_parallel(model) else model
  129. def initialize_weights(model):
  130. for m in model.modules():
  131. t = type(m)
  132. if t is nn.Conv2d:
  133. pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  134. elif t is nn.BatchNorm2d:
  135. m.eps = 1e-3
  136. m.momentum = 0.03
  137. elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
  138. m.inplace = True
  139. def find_modules(model, mclass=nn.Conv2d):
  140. # Finds layer indices matching module class 'mclass'
  141. return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
  142. def sparsity(model):
  143. # Return global model sparsity
  144. a, b = 0, 0
  145. for p in model.parameters():
  146. a += p.numel()
  147. b += (p == 0).sum()
  148. return b / a
  149. def prune(model, amount=0.3):
  150. # Prune model to requested global sparsity
  151. import torch.nn.utils.prune as prune
  152. print('Pruning model... ', end='')
  153. for name, m in model.named_modules():
  154. if isinstance(m, nn.Conv2d):
  155. prune.l1_unstructured(m, name='weight', amount=amount) # prune
  156. prune.remove(m, 'weight') # make permanent
  157. print(' %.3g global sparsity' % sparsity(model))
  158. def fuse_conv_and_bn(conv, bn):
  159. # Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
  160. fusedconv = nn.Conv2d(conv.in_channels,
  161. conv.out_channels,
  162. kernel_size=conv.kernel_size,
  163. stride=conv.stride,
  164. padding=conv.padding,
  165. groups=conv.groups,
  166. bias=True).requires_grad_(False).to(conv.weight.device)
  167. # Prepare filters
  168. w_conv = conv.weight.clone().view(conv.out_channels, -1)
  169. w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
  170. fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
  171. # Prepare spatial bias
  172. b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
  173. b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
  174. fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
  175. return fusedconv
  176. def model_info(model, verbose=False, img_size=640):
  177. # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
  178. n_p = sum(x.numel() for x in model.parameters()) # number parameters
  179. n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
  180. if verbose:
  181. print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
  182. for i, (name, p) in enumerate(model.named_parameters()):
  183. name = name.replace('module_list.', '')
  184. print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
  185. (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
  186. try: # FLOPs
  187. from thop import profile
  188. stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
  189. img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
  190. flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
  191. img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
  192. fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs
  193. except Exception:
  194. fs = ''
  195. name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
  196. LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
  197. def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
  198. # Scales img(bs,3,y,x) by ratio constrained to gs-multiple
  199. if ratio == 1.0:
  200. return img
  201. h, w = img.shape[2:]
  202. s = (int(h * ratio), int(w * ratio)) # new size
  203. img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
  204. if not same_shape: # pad/crop img
  205. h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
  206. return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
  207. def copy_attr(a, b, include=(), exclude=()):
  208. # Copy attributes from b to a, options to only include [...] and to exclude [...]
  209. for k, v in b.__dict__.items():
  210. if (len(include) and k not in include) or k.startswith('_') or k in exclude:
  211. continue
  212. else:
  213. setattr(a, k, v)
  214. class EarlyStopping:
  215. # YOLOv5 simple early stopper
  216. def __init__(self, patience=30):
  217. self.best_fitness = 0.0 # i.e. mAP
  218. self.best_epoch = 0
  219. self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
  220. self.possible_stop = False # possible stop may occur next epoch
  221. def __call__(self, epoch, fitness):
  222. if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
  223. self.best_epoch = epoch
  224. self.best_fitness = fitness
  225. delta = epoch - self.best_epoch # epochs without improvement
  226. self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
  227. stop = delta >= self.patience # stop training if patience exceeded
  228. if stop:
  229. LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
  230. f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
  231. f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
  232. f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
  233. return stop
  234. class ModelEMA:
  235. """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
  236. Keeps a moving average of everything in the model state_dict (parameters and buffers)
  237. For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
  238. """
  239. def __init__(self, model, decay=0.9999, tau=2000, updates=0):
  240. # Create EMA
  241. self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
  242. # if next(model.parameters()).device.type != 'cpu':
  243. # self.ema.half() # FP16 EMA
  244. self.updates = updates # number of EMA updates
  245. self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
  246. for p in self.ema.parameters():
  247. p.requires_grad_(False)
  248. def update(self, model):
  249. # Update EMA parameters
  250. with torch.no_grad():
  251. self.updates += 1
  252. d = self.decay(self.updates)
  253. msd = de_parallel(model).state_dict() # model state_dict
  254. for k, v in self.ema.state_dict().items():
  255. if v.dtype.is_floating_point:
  256. v *= d
  257. v += (1 - d) * msd[k].detach()
  258. def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
  259. # Update EMA attributes
  260. copy_attr(self.ema, model, include, exclude)