Вы не можете выбрать более 25 тем
Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
|
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
- # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
- FROM nvcr.io/nvidia/pytorch:21.05-py3
-
- # Install linux packages
- RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
-
- # Install python dependencies
- COPY requirements.txt .
- RUN python -m pip install --upgrade pip
- RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
- RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook wandb>=0.12.2
- RUN pip install --no-cache -U torch torchvision numpy
- # RUN pip install --no-cache torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
-
- # Create working directory
- RUN mkdir -p /usr/src/app
- WORKDIR /usr/src/app
-
- # Copy contents
- COPY . /usr/src/app
-
- # Downloads to user config dir
- ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/
-
- # Set environment variables
- # ENV HOME=/usr/src/app
-
-
- # Usage Examples -------------------------------------------------------------------------------------------------------
-
- # Build and Push
- # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
-
- # Pull and Run
- # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
-
- # Pull and Run with local directory access
- # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
-
- # Kill all
- # sudo docker kill $(sudo docker ps -q)
-
- # Kill all image-based
- # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
-
- # Bash into running container
- # sudo docker exec -it 5a9b5863d93d bash
-
- # Bash into stopped container
- # id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
-
- # Clean up
- # docker system prune -a --volumes
-
- # Update Ubuntu drivers
- # https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
-
- # DDP test
- # python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
|