|
- import math
- import os
- import time
- from copy import deepcopy
-
- import torch
- import torch.backends.cudnn as cudnn
- import torch.nn as nn
- import torch.nn.functional as F
- import torchvision.models as models
-
-
- def init_seeds(seed=0):
- torch.manual_seed(seed)
-
- # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
- if seed == 0: # slower, more reproducible
- cudnn.deterministic = True
- cudnn.benchmark = False
- else: # faster, less reproducible
- cudnn.deterministic = False
- cudnn.benchmark = True
-
-
- def select_device(device='', apex=False, batch_size=None):
- # device = 'cpu' or '0' or '0,1,2,3'
- cpu_request = device.lower() == 'cpu'
- if device and not cpu_request: # if device requested other than 'cpu'
- os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
- assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
-
- cuda = False if cpu_request else torch.cuda.is_available()
- if cuda:
- c = 1024 ** 2 # bytes to MB
- ng = torch.cuda.device_count()
- if ng > 1 and batch_size: # check that batch_size is compatible with device_count
- assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
- x = [torch.cuda.get_device_properties(i) for i in range(ng)]
- s = 'Using CUDA ' + ('Apex ' if apex else '') # apex for mixed precision https://github.com/NVIDIA/apex
- for i in range(0, ng):
- if i == 1:
- s = ' ' * len(s)
- print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
- (s, i, x[i].name, x[i].total_memory / c))
- else:
- print('Using CPU')
-
- print('') # skip a line
- return torch.device('cuda:0' if cuda else 'cpu')
-
-
- def time_synchronized():
- torch.cuda.synchronize() if torch.cuda.is_available() else None
- return time.time()
-
-
- def initialize_weights(model):
- for m in model.modules():
- t = type(m)
- if t is nn.Conv2d:
- pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif t is nn.BatchNorm2d:
- m.eps = 1e-4
- m.momentum = 0.03
- elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
- m.inplace = True
-
-
- def find_modules(model, mclass=nn.Conv2d):
- # finds layer indices matching module class 'mclass'
- return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
-
-
- def fuse_conv_and_bn(conv, bn):
- # https://tehnokv.com/posts/fusing-batchnorm-and-conv/
- with torch.no_grad():
- # init
- fusedconv = torch.nn.Conv2d(conv.in_channels,
- conv.out_channels,
- kernel_size=conv.kernel_size,
- stride=conv.stride,
- padding=conv.padding,
- bias=True)
-
- # prepare filters
- w_conv = conv.weight.clone().view(conv.out_channels, -1)
- w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
- fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
-
- # prepare spatial bias
- if conv.bias is not None:
- b_conv = conv.bias
- else:
- b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device)
- b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
- fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
-
- return fusedconv
-
-
- def model_info(model, verbose=False):
- # Plots a line-by-line description of a PyTorch model
- n_p = sum(x.numel() for x in model.parameters()) # number parameters
- n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
- if verbose:
- print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
- for i, (name, p) in enumerate(model.named_parameters()):
- name = name.replace('module_list.', '')
- print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
- (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
-
- try: # FLOPS
- from thop import profile
- macs, _ = profile(model, inputs=(torch.zeros(1, 3, 480, 640),), verbose=False)
- fs = ', %.1f GFLOPS' % (macs / 1E9 * 2)
- except:
- fs = ''
-
- print('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
-
-
- def load_classifier(name='resnet101', n=2):
- # Loads a pretrained model reshaped to n-class output
- model = models.__dict__[name](pretrained=True)
-
- # Display model properties
- input_size = [3, 224, 224]
- input_space = 'RGB'
- input_range = [0, 1]
- mean = [0.485, 0.456, 0.406]
- std = [0.229, 0.224, 0.225]
- for x in [input_size, input_space, input_range, mean, std]:
- print(x + ' =', eval(x))
-
- # Reshape output to n classes
- filters = model.fc.weight.shape[1]
- model.fc.bias = torch.nn.Parameter(torch.zeros(n), requires_grad=True)
- model.fc.weight = torch.nn.Parameter(torch.zeros(n, filters), requires_grad=True)
- model.fc.out_features = n
- return model
-
-
- def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
- # scales img(bs,3,y,x) by ratio
- h, w = img.shape[2:]
- s = (int(h * ratio), int(w * ratio)) # new size
- img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
- if not same_shape: # pad/crop img
- gs = 32 # (pixels) grid size
- h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
- return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
-
-
- class ModelEMA:
- """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
- Keep a moving average of everything in the model state_dict (parameters and buffers).
- This is intended to allow functionality like
- https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
- A smoothed version of the weights is necessary for some training schemes to perform well.
- E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use
- RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA
- smoothing of weights to match results. Pay attention to the decay constant you are using
- relative to your update count per epoch.
- To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but
- disable validation of the EMA weights. Validation will have to be done manually in a separate
- process, or after the training stops converging.
- This class is sensitive where it is initialized in the sequence of model init,
- GPU assignment and distributed training wrappers.
- I've tested with the sequence in my own train.py for torch.DataParallel, apex.DDP, and single-GPU.
- """
-
- def __init__(self, model, decay=0.9999, device=''):
- # make a copy of the model for accumulating moving average of weights
- self.ema = deepcopy(model)
- self.ema.eval()
- self.updates = 0 # number of EMA updates
- self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
- self.device = device # perform ema on different device from model if set
- if device:
- self.ema.to(device=device)
- for p in self.ema.parameters():
- p.requires_grad_(False)
-
- def update(self, model):
- self.updates += 1
- d = self.decay(self.updates)
- with torch.no_grad():
- if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel):
- msd, esd = model.module.state_dict(), self.ema.module.state_dict()
- else:
- msd, esd = model.state_dict(), self.ema.state_dict()
-
- for k, v in esd.items():
- if v.dtype.is_floating_point:
- v *= d
- v += (1. - d) * msd[k].detach()
-
- def update_attr(self, model):
- # Assign attributes (which may change during training)
- for k in model.__dict__.keys():
- if not k.startswith('_'):
- setattr(self.ema, k, getattr(model, k))
|