|
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- TensorFlow, Keras and TFLite versions of YOLOv5
- Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
-
- Usage:
- $ python models/tf.py --weights yolov5s.pt
-
- Export:
- $ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
- """
-
- import argparse
- import sys
- from copy import deepcopy
- from pathlib import Path
-
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- # ROOT = ROOT.relative_to(Path.cwd()) # relative
-
- import numpy as np
- import tensorflow as tf
- import torch
- import torch.nn as nn
- from tensorflow import keras
-
- from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, Concat, Conv, DWConv, Focus, autopad
- from models.experimental import CrossConv, MixConv2d, attempt_load
- from models.yolo import Detect
- from utils.activations import SiLU
- from utils.general import LOGGER, make_divisible, print_args
-
-
- class TFBN(keras.layers.Layer):
- # TensorFlow BatchNormalization wrapper
- def __init__(self, w=None):
- super().__init__()
- self.bn = keras.layers.BatchNormalization(
- beta_initializer=keras.initializers.Constant(w.bias.numpy()),
- gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
- moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
- moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
- epsilon=w.eps)
-
- def call(self, inputs):
- return self.bn(inputs)
-
-
- class TFPad(keras.layers.Layer):
-
- def __init__(self, pad):
- super().__init__()
- self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
-
- def call(self, inputs):
- return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
-
-
- class TFConv(keras.layers.Layer):
- # Standard convolution
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
- # ch_in, ch_out, weights, kernel, stride, padding, groups
- super().__init__()
- assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
- assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
- # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
- # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
-
- conv = keras.layers.Conv2D(
- c2,
- k,
- s,
- 'SAME' if s == 1 else 'VALID',
- use_bias=False if hasattr(w, 'bn') else True,
- kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
- bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
- self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
- self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
-
- # YOLOv5 activations
- if isinstance(w.act, nn.LeakyReLU):
- self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
- elif isinstance(w.act, nn.Hardswish):
- self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
- elif isinstance(w.act, (nn.SiLU, SiLU)):
- self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
- else:
- raise Exception(f'no matching TensorFlow activation found for {w.act}')
-
- def call(self, inputs):
- return self.act(self.bn(self.conv(inputs)))
-
-
- class TFFocus(keras.layers.Layer):
- # Focus wh information into c-space
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
- # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__()
- self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
-
- def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
- # inputs = inputs / 255 # normalize 0-255 to 0-1
- return self.conv(
- tf.concat(
- [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]],
- 3))
-
-
- class TFBottleneck(keras.layers.Layer):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
- self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
- self.add = shortcut and c1 == c2
-
- def call(self, inputs):
- return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
-
-
- class TFConv2d(keras.layers.Layer):
- # Substitution for PyTorch nn.Conv2D
- def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
- super().__init__()
- assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
- self.conv = keras.layers.Conv2D(
- c2,
- k,
- s,
- 'VALID',
- use_bias=bias,
- kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
- bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None,
- )
-
- def call(self, inputs):
- return self.conv(inputs)
-
-
- class TFBottleneckCSP(keras.layers.Layer):
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
- # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
- self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
- self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
- self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
- self.bn = TFBN(w.bn)
- self.act = lambda x: keras.activations.swish(x)
- self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
-
- def call(self, inputs):
- y1 = self.cv3(self.m(self.cv1(inputs)))
- y2 = self.cv2(inputs)
- return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
-
-
- class TFC3(keras.layers.Layer):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
- # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
- self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
- self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
- self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
-
- def call(self, inputs):
- return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
-
-
- class TFSPP(keras.layers.Layer):
- # Spatial pyramid pooling layer used in YOLOv3-SPP
- def __init__(self, c1, c2, k=(5, 9, 13), w=None):
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
- self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
- self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
-
- def call(self, inputs):
- x = self.cv1(inputs)
- return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
-
-
- class TFSPPF(keras.layers.Layer):
- # Spatial pyramid pooling-Fast layer
- def __init__(self, c1, c2, k=5, w=None):
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
- self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
- self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
-
- def call(self, inputs):
- x = self.cv1(inputs)
- y1 = self.m(x)
- y2 = self.m(y1)
- return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
-
-
- class TFDetect(keras.layers.Layer):
- # TF YOLOv5 Detect layer
- def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
- super().__init__()
- self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
- self.nc = nc # number of classes
- self.no = nc + 5 # number of outputs per anchor
- self.nl = len(anchors) # number of detection layers
- self.na = len(anchors[0]) // 2 # number of anchors
- self.grid = [tf.zeros(1)] * self.nl # init grid
- self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
- self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
- self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
- self.training = False # set to False after building model
- self.imgsz = imgsz
- for i in range(self.nl):
- ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
- self.grid[i] = self._make_grid(nx, ny)
-
- def call(self, inputs):
- z = [] # inference output
- x = []
- for i in range(self.nl):
- x.append(self.m[i](inputs[i]))
- # x(bs,20,20,255) to x(bs,3,20,20,85)
- ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
- x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
-
- if not self.training: # inference
- y = tf.sigmoid(x[i])
- grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
- anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
- xy = (y[..., 0:2] * 2 + grid) * self.stride[i] # xy
- wh = y[..., 2:4] ** 2 * anchor_grid
- # Normalize xywh to 0-1 to reduce calibration error
- xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
- wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
- y = tf.concat([xy, wh, y[..., 4:]], -1)
- z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
-
- return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), x)
-
- @staticmethod
- def _make_grid(nx=20, ny=20):
- # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
- # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
- xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
- return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
-
-
- class TFUpsample(keras.layers.Layer):
- # TF version of torch.nn.Upsample()
- def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
- super().__init__()
- assert scale_factor == 2, "scale_factor must be 2"
- self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
- # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
- # with default arguments: align_corners=False, half_pixel_centers=False
- # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
- # size=(x.shape[1] * 2, x.shape[2] * 2))
-
- def call(self, inputs):
- return self.upsample(inputs)
-
-
- class TFConcat(keras.layers.Layer):
- # TF version of torch.concat()
- def __init__(self, dimension=1, w=None):
- super().__init__()
- assert dimension == 1, "convert only NCHW to NHWC concat"
- self.d = 3
-
- def call(self, inputs):
- return tf.concat(inputs, self.d)
-
-
- def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
- LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
- anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
-
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
- for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
- m_str = m
- m = eval(m) if isinstance(m, str) else m # eval strings
- for j, a in enumerate(args):
- try:
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
- except NameError:
- pass
-
- n = max(round(n * gd), 1) if n > 1 else n # depth gain
- if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
- c1, c2 = ch[f], args[0]
- c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
-
- args = [c1, c2, *args[1:]]
- if m in [BottleneckCSP, C3]:
- args.insert(2, n)
- n = 1
- elif m is nn.BatchNorm2d:
- args = [ch[f]]
- elif m is Concat:
- c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
- elif m is Detect:
- args.append([ch[x + 1] for x in f])
- if isinstance(args[1], int): # number of anchors
- args[1] = [list(range(args[1] * 2))] * len(f)
- args.append(imgsz)
- else:
- c2 = ch[f]
-
- tf_m = eval('TF' + m_str.replace('nn.', ''))
- m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
- else tf_m(*args, w=model.model[i]) # module
-
- torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
- t = str(m)[8:-2].replace('__main__.', '') # module type
- np = sum(x.numel() for x in torch_m_.parameters()) # number params
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
- LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
- layers.append(m_)
- ch.append(c2)
- return keras.Sequential(layers), sorted(save)
-
-
- class TFModel:
- # TF YOLOv5 model
- def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
- super().__init__()
- if isinstance(cfg, dict):
- self.yaml = cfg # model dict
- else: # is *.yaml
- import yaml # for torch hub
- self.yaml_file = Path(cfg).name
- with open(cfg) as f:
- self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
-
- # Define model
- if nc and nc != self.yaml['nc']:
- LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
- self.yaml['nc'] = nc # override yaml value
- self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
-
- def predict(self,
- inputs,
- tf_nms=False,
- agnostic_nms=False,
- topk_per_class=100,
- topk_all=100,
- iou_thres=0.45,
- conf_thres=0.25):
- y = [] # outputs
- x = inputs
- for i, m in enumerate(self.model.layers):
- if m.f != -1: # if not from previous layer
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
-
- x = m(x) # run
- y.append(x if m.i in self.savelist else None) # save output
-
- # Add TensorFlow NMS
- if tf_nms:
- boxes = self._xywh2xyxy(x[0][..., :4])
- probs = x[0][:, :, 4:5]
- classes = x[0][:, :, 5:]
- scores = probs * classes
- if agnostic_nms:
- nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
- return nms, x[1]
- else:
- boxes = tf.expand_dims(boxes, 2)
- nms = tf.image.combined_non_max_suppression(boxes,
- scores,
- topk_per_class,
- topk_all,
- iou_thres,
- conf_thres,
- clip_boxes=False)
- return nms, x[1]
-
- return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
- # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
- # xywh = x[..., :4] # x(6300,4) boxes
- # conf = x[..., 4:5] # x(6300,1) confidences
- # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
- # return tf.concat([conf, cls, xywh], 1)
-
- @staticmethod
- def _xywh2xyxy(xywh):
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
- x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
- return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
-
-
- class AgnosticNMS(keras.layers.Layer):
- # TF Agnostic NMS
- def call(self, input, topk_all, iou_thres, conf_thres):
- # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
- return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
- input,
- fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
- name='agnostic_nms')
-
- @staticmethod
- def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
- boxes, classes, scores = x
- class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
- scores_inp = tf.reduce_max(scores, -1)
- selected_inds = tf.image.non_max_suppression(boxes,
- scores_inp,
- max_output_size=topk_all,
- iou_threshold=iou_thres,
- score_threshold=conf_thres)
- selected_boxes = tf.gather(boxes, selected_inds)
- padded_boxes = tf.pad(selected_boxes,
- paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
- mode="CONSTANT",
- constant_values=0.0)
- selected_scores = tf.gather(scores_inp, selected_inds)
- padded_scores = tf.pad(selected_scores,
- paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
- mode="CONSTANT",
- constant_values=-1.0)
- selected_classes = tf.gather(class_inds, selected_inds)
- padded_classes = tf.pad(selected_classes,
- paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
- mode="CONSTANT",
- constant_values=-1.0)
- valid_detections = tf.shape(selected_inds)[0]
- return padded_boxes, padded_scores, padded_classes, valid_detections
-
-
- def representative_dataset_gen(dataset, ncalib=100):
- # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
- for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
- input = np.transpose(img, [1, 2, 0])
- input = np.expand_dims(input, axis=0).astype(np.float32)
- input /= 255
- yield [input]
- if n >= ncalib:
- break
-
-
- def run(
- weights=ROOT / 'yolov5s.pt', # weights path
- imgsz=(640, 640), # inference size h,w
- batch_size=1, # batch size
- dynamic=False, # dynamic batch size
- ):
- # PyTorch model
- im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
- model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
- _ = model(im) # inference
- model.info()
-
- # TensorFlow model
- im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
- tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
- _ = tf_model.predict(im) # inference
-
- # Keras model
- im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
- keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
- keras_model.summary()
-
- LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
-
-
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
- opt = parser.parse_args()
- opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
- print_args(vars(opt))
- return opt
-
-
- def main(opt):
- run(**vars(opt))
-
-
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|