Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

328 lines
15KB

  1. import argparse
  2. import glob
  3. import json
  4. import os
  5. from pathlib import Path
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, box_iou, \
  13. non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, clip_coords, set_logging, increment_path
  14. from utils.loss import compute_loss
  15. from utils.metrics import ap_per_class
  16. from utils.plots import plot_images, output_to_target
  17. from utils.torch_utils import select_device, time_synchronized
  18. def test(data,
  19. weights=None,
  20. batch_size=16,
  21. imgsz=640,
  22. conf_thres=0.001,
  23. iou_thres=0.6, # for NMS
  24. save_json=False,
  25. single_cls=False,
  26. augment=False,
  27. verbose=False,
  28. model=None,
  29. dataloader=None,
  30. save_dir=Path(''), # for saving images
  31. save_txt=False, # for auto-labelling
  32. save_conf=False,
  33. plots=True,
  34. log_imgs=0): # number of logged images
  35. # Initialize/load model and set device
  36. training = model is not None
  37. if training: # called by train.py
  38. device = next(model.parameters()).device # get model device
  39. else: # called directly
  40. set_logging()
  41. device = select_device(opt.device, batch_size=batch_size)
  42. save_txt = opt.save_txt # save *.txt labels
  43. # Directories
  44. save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
  45. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  46. # Load model
  47. model = attempt_load(weights, map_location=device) # load FP32 model
  48. imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
  49. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  50. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  51. # model = nn.DataParallel(model)
  52. # Half
  53. half = device.type != 'cpu' # half precision only supported on CUDA
  54. if half:
  55. model.half()
  56. # Configure
  57. model.eval()
  58. is_coco = data.endswith('coco.yaml') # is COCO dataset
  59. with open(data) as f:
  60. data = yaml.load(f, Loader=yaml.FullLoader) # model dict
  61. check_dataset(data) # check
  62. nc = 1 if single_cls else int(data['nc']) # number of classes
  63. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  64. niou = iouv.numel()
  65. # Logging
  66. log_imgs, wandb = min(log_imgs, 100), None # ceil
  67. try:
  68. import wandb # Weights & Biases
  69. except ImportError:
  70. log_imgs = 0
  71. # Dataloader
  72. if not training:
  73. img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
  74. _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
  75. path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
  76. dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0]
  77. seen = 0
  78. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  79. coco91class = coco80_to_coco91_class()
  80. s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  81. p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
  82. loss = torch.zeros(3, device=device)
  83. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  84. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  85. img = img.to(device, non_blocking=True)
  86. img = img.half() if half else img.float() # uint8 to fp16/32
  87. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  88. targets = targets.to(device)
  89. nb, _, height, width = img.shape # batch size, channels, height, width
  90. whwh = torch.Tensor([width, height, width, height]).to(device)
  91. # Disable gradients
  92. with torch.no_grad():
  93. # Run model
  94. t = time_synchronized()
  95. inf_out, train_out = model(img, augment=augment) # inference and training outputs
  96. t0 += time_synchronized() - t
  97. # Compute loss
  98. if training: # if model has loss hyperparameters
  99. loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
  100. # Run NMS
  101. t = time_synchronized()
  102. output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres)
  103. t1 += time_synchronized() - t
  104. # Statistics per image
  105. for si, pred in enumerate(output):
  106. labels = targets[targets[:, 0] == si, 1:]
  107. nl = len(labels)
  108. tcls = labels[:, 0].tolist() if nl else [] # target class
  109. seen += 1
  110. if len(pred) == 0:
  111. if nl:
  112. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  113. continue
  114. # Append to text file
  115. path = Path(paths[si])
  116. if save_txt:
  117. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  118. x = pred.clone()
  119. x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original
  120. for *xyxy, conf, cls in x:
  121. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  122. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  123. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  124. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  125. # W&B logging
  126. if plots and len(wandb_images) < log_imgs:
  127. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  128. "class_id": int(cls),
  129. "box_caption": "%s %.3f" % (names[cls], conf),
  130. "scores": {"class_score": conf},
  131. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  132. boxes = {"predictions": {"box_data": box_data, "class_labels": names}}
  133. wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))
  134. # Clip boxes to image bounds
  135. clip_coords(pred, (height, width))
  136. # Append to pycocotools JSON dictionary
  137. if save_json:
  138. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  139. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  140. box = pred[:, :4].clone() # xyxy
  141. scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
  142. box = xyxy2xywh(box) # xywh
  143. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  144. for p, b in zip(pred.tolist(), box.tolist()):
  145. jdict.append({'image_id': image_id,
  146. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  147. 'bbox': [round(x, 3) for x in b],
  148. 'score': round(p[4], 5)})
  149. # Assign all predictions as incorrect
  150. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  151. if nl:
  152. detected = [] # target indices
  153. tcls_tensor = labels[:, 0]
  154. # target boxes
  155. tbox = xywh2xyxy(labels[:, 1:5]) * whwh
  156. # Per target class
  157. for cls in torch.unique(tcls_tensor):
  158. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
  159. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
  160. # Search for detections
  161. if pi.shape[0]:
  162. # Prediction to target ious
  163. ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
  164. # Append detections
  165. detected_set = set()
  166. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  167. d = ti[i[j]] # detected target
  168. if d.item() not in detected_set:
  169. detected_set.add(d.item())
  170. detected.append(d)
  171. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  172. if len(detected) == nl: # all targets already located in image
  173. break
  174. # Append statistics (correct, conf, pcls, tcls)
  175. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  176. # Plot images
  177. if plots and batch_i < 3:
  178. f = save_dir / f'test_batch{batch_i}_labels.jpg' # filename
  179. plot_images(img, targets, paths, f, names) # labels
  180. f = save_dir / f'test_batch{batch_i}_pred.jpg'
  181. plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions
  182. # Compute statistics
  183. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  184. if len(stats) and stats[0].any():
  185. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  186. p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
  187. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  188. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  189. else:
  190. nt = torch.zeros(1)
  191. # W&B logging
  192. if plots and wandb and wandb.run:
  193. wandb.log({"Images": wandb_images})
  194. wandb.log({"Validation": [wandb.Image(str(x), caption=x.name) for x in sorted(save_dir.glob('test*.jpg'))]})
  195. # Print results
  196. pf = '%20s' + '%12.3g' * 6 # print format
  197. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  198. # Print results per class
  199. if verbose and nc > 1 and len(stats):
  200. for i, c in enumerate(ap_class):
  201. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  202. # Print speeds
  203. t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
  204. if not training:
  205. print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
  206. # Save JSON
  207. if save_json and len(jdict):
  208. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  209. anno_json = glob.glob('../coco/annotations/instances_val*.json')[0] # annotations json
  210. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  211. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  212. with open(pred_json, 'w') as f:
  213. json.dump(jdict, f)
  214. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  215. from pycocotools.coco import COCO
  216. from pycocotools.cocoeval import COCOeval
  217. anno = COCO(anno_json) # init annotations api
  218. pred = anno.loadRes(pred_json) # init predictions api
  219. eval = COCOeval(anno, pred, 'bbox')
  220. if is_coco:
  221. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  222. eval.evaluate()
  223. eval.accumulate()
  224. eval.summarize()
  225. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  226. except Exception as e:
  227. print('ERROR: pycocotools unable to run: %s' % e)
  228. # Return results
  229. if not training:
  230. print('Results saved to %s' % save_dir)
  231. model.float() # for training
  232. maps = np.zeros(nc) + map
  233. for i, c in enumerate(ap_class):
  234. maps[c] = ap[i]
  235. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  236. if __name__ == '__main__':
  237. parser = argparse.ArgumentParser(prog='test.py')
  238. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  239. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
  240. parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
  241. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  242. parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
  243. parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
  244. parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
  245. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  246. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  247. parser.add_argument('--augment', action='store_true', help='augmented inference')
  248. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  249. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  250. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  251. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  252. parser.add_argument('--project', default='runs/test', help='save to project/name')
  253. parser.add_argument('--name', default='exp', help='save to project/name')
  254. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  255. opt = parser.parse_args()
  256. opt.save_json |= opt.data.endswith('coco.yaml')
  257. opt.data = check_file(opt.data) # check file
  258. print(opt)
  259. if opt.task in ['val', 'test']: # run normally
  260. test(opt.data,
  261. opt.weights,
  262. opt.batch_size,
  263. opt.img_size,
  264. opt.conf_thres,
  265. opt.iou_thres,
  266. opt.save_json,
  267. opt.single_cls,
  268. opt.augment,
  269. opt.verbose,
  270. save_txt=opt.save_txt,
  271. save_conf=opt.save_conf,
  272. )
  273. elif opt.task == 'study': # run over a range of settings and save/plot
  274. for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
  275. f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
  276. x = list(range(320, 800, 64)) # x axis
  277. y = [] # y axis
  278. for i in x: # img-size
  279. print('\nRunning %s point %s...' % (f, i))
  280. r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
  281. y.append(r + t) # results and times
  282. np.savetxt(f, y, fmt='%10.4g') # save
  283. os.system('zip -r study.zip study_*.txt')
  284. # utils.general.plot_study_txt(f, x) # plot