|
- # Model validation metrics
-
- from pathlib import Path
-
- import matplotlib.pyplot as plt
- import numpy as np
-
-
- def fitness(x):
- # Model fitness as a weighted combination of metrics
- w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
- return (x[:, :4] * w).sum(1)
-
-
- def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]):
- """ Compute the average precision, given the recall and precision curves.
- Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
- # Arguments
- tp: True positives (nparray, nx1 or nx10).
- conf: Objectness value from 0-1 (nparray).
- pred_cls: Predicted object classes (nparray).
- target_cls: True object classes (nparray).
- plot: Plot precision-recall curve at mAP@0.5
- save_dir: Plot save directory
- # Returns
- The average precision as computed in py-faster-rcnn.
- """
-
- # Sort by objectness
- i = np.argsort(-conf)
- tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
-
- # Find unique classes
- unique_classes = np.unique(target_cls)
-
- # Create Precision-Recall curve and compute AP for each class
- px, py = np.linspace(0, 1, 1000), [] # for plotting
- pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
- s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
- ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
- for ci, c in enumerate(unique_classes):
- i = pred_cls == c
- n_l = (target_cls == c).sum() # number of labels
- n_p = i.sum() # number of predictions
-
- if n_p == 0 or n_l == 0:
- continue
- else:
- # Accumulate FPs and TPs
- fpc = (1 - tp[i]).cumsum(0)
- tpc = tp[i].cumsum(0)
-
- # Recall
- recall = tpc / (n_l + 1e-16) # recall curve
- r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
-
- # Precision
- precision = tpc / (tpc + fpc) # precision curve
- p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
-
- # AP from recall-precision curve
- for j in range(tp.shape[1]):
- ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
- if j == 0:
- py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
-
- # Compute F1 score (harmonic mean of precision and recall)
- f1 = 2 * p * r / (p + r + 1e-16)
-
- if plot:
- plot_pr_curve(px, py, ap, save_dir, names)
-
- return p, r, ap, f1, unique_classes.astype('int32')
-
-
- def compute_ap(recall, precision):
- """ Compute the average precision, given the recall and precision curves.
- Source: https://github.com/rbgirshick/py-faster-rcnn.
- # Arguments
- recall: The recall curve (list).
- precision: The precision curve (list).
- # Returns
- The average precision as computed in py-faster-rcnn.
- """
-
- # Append sentinel values to beginning and end
- mrec = recall # np.concatenate(([0.], recall, [recall[-1] + 1E-3]))
- mpre = precision # np.concatenate(([0.], precision, [0.]))
-
- # Compute the precision envelope
- mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
-
- # Integrate area under curve
- method = 'interp' # methods: 'continuous', 'interp'
- if method == 'interp':
- x = np.linspace(0, 1, 101) # 101-point interp (COCO)
- ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
- else: # 'continuous'
- i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
-
- return ap, mpre, mrec
-
-
- def plot_pr_curve(px, py, ap, save_dir='.', names=()):
- fig, ax = plt.subplots(1, 1, figsize=(9, 6))
- py = np.stack(py, axis=1)
-
- if 0 < len(names) < 21: # show mAP in legend if < 10 classes
- for i, y in enumerate(py.T):
- ax.plot(px, y, linewidth=1, label=f'{names[i]} %.3f' % ap[i, 0]) # plot(recall, precision)
- else:
- ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
-
- ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
- ax.set_xlabel('Recall')
- ax.set_ylabel('Precision')
- ax.set_xlim(0, 1)
- ax.set_ylim(0, 1)
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
- fig.tight_layout()
- fig.savefig(Path(save_dir) / 'precision_recall_curve.png', dpi=250)
|