You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

347 lines
17KB

  1. import argparse
  2. import json
  3. import os
  4. from pathlib import Path
  5. from threading import Thread
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
  13. box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
  14. from utils.metrics import ap_per_class, ConfusionMatrix
  15. from utils.plots import plot_images, output_to_target, plot_study_txt
  16. from utils.torch_utils import select_device, time_synchronized
  17. @torch.no_grad()
  18. def test(data,
  19. weights=None, # model.pt path(s)
  20. batch_size=32, # batch size
  21. imgsz=640, # inference size (pixels)
  22. conf_thres=0.001, # confidence threshold
  23. iou_thres=0.6, # NMS IoU threshold
  24. task='val', # train, val, test, speed or study
  25. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  26. single_cls=False, # treat as single-class dataset
  27. augment=False, # augmented inference
  28. verbose=False, # verbose output
  29. save_txt=False, # save results to *.txt
  30. save_hybrid=False, # save label+prediction hybrid results to *.txt
  31. save_conf=False, # save confidences in --save-txt labels
  32. save_json=False, # save a cocoapi-compatible JSON results file
  33. project='runs/test', # save to project/name
  34. name='exp', # save to project/name
  35. exist_ok=False, # existing project/name ok, do not increment
  36. half=True, # use FP16 half-precision inference
  37. model=None,
  38. dataloader=None,
  39. save_dir=Path(''),
  40. plots=True,
  41. wandb_logger=None,
  42. compute_loss=None,
  43. ):
  44. # Initialize/load model and set device
  45. training = model is not None
  46. if training: # called by train.py
  47. device = next(model.parameters()).device # get model device
  48. else: # called directly
  49. set_logging()
  50. device = select_device(device, batch_size=batch_size)
  51. # Directories
  52. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  53. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  54. # Load model
  55. model = attempt_load(weights, map_location=device) # load FP32 model
  56. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  57. imgsz = check_img_size(imgsz, s=gs) # check image size
  58. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  59. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  60. # model = nn.DataParallel(model)
  61. # Half
  62. half &= device.type != 'cpu' # half precision only supported on CUDA
  63. if half:
  64. model.half()
  65. # Configure
  66. model.eval()
  67. if isinstance(data, str):
  68. with open(data) as f:
  69. data = yaml.safe_load(f)
  70. check_dataset(data) # check
  71. is_coco = type(data['val']) is str and data['val'].endswith('coco/val2017.txt') # COCO dataset
  72. nc = 1 if single_cls else int(data['nc']) # number of classes
  73. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  74. niou = iouv.numel()
  75. # Logging
  76. log_imgs = 0
  77. if wandb_logger and wandb_logger.wandb:
  78. log_imgs = min(wandb_logger.log_imgs, 100)
  79. # Dataloader
  80. if not training:
  81. if device.type != 'cpu':
  82. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  83. task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  84. dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True,
  85. prefix=colorstr(f'{task}: '))[0]
  86. seen = 0
  87. confusion_matrix = ConfusionMatrix(nc=nc)
  88. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  89. coco91class = coco80_to_coco91_class()
  90. s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  91. p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
  92. loss = torch.zeros(3, device=device)
  93. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  94. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  95. t_ = time_synchronized()
  96. img = img.to(device, non_blocking=True)
  97. img = img.half() if half else img.float() # uint8 to fp16/32
  98. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  99. targets = targets.to(device)
  100. nb, _, height, width = img.shape # batch size, channels, height, width
  101. t = time_synchronized()
  102. t0 += t - t_
  103. # Run model
  104. out, train_out = model(img, augment=augment) # inference and training outputs
  105. t1 += time_synchronized() - t
  106. # Compute loss
  107. if compute_loss:
  108. loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
  109. # Run NMS
  110. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  111. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  112. t = time_synchronized()
  113. out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
  114. t2 += time_synchronized() - t
  115. # Statistics per image
  116. for si, pred in enumerate(out):
  117. labels = targets[targets[:, 0] == si, 1:]
  118. nl = len(labels)
  119. tcls = labels[:, 0].tolist() if nl else [] # target class
  120. path = Path(paths[si])
  121. seen += 1
  122. if len(pred) == 0:
  123. if nl:
  124. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  125. continue
  126. # Predictions
  127. if single_cls:
  128. pred[:, 5] = 0
  129. predn = pred.clone()
  130. scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
  131. # Append to text file
  132. if save_txt:
  133. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  134. for *xyxy, conf, cls in predn.tolist():
  135. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  136. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  137. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  138. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  139. # W&B logging - Media Panel plots
  140. if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
  141. if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
  142. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  143. "class_id": int(cls),
  144. "box_caption": "%s %.3f" % (names[cls], conf),
  145. "scores": {"class_score": conf},
  146. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  147. boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
  148. wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
  149. wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
  150. # Append to pycocotools JSON dictionary
  151. if save_json:
  152. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  153. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  154. box = xyxy2xywh(predn[:, :4]) # xywh
  155. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  156. for p, b in zip(pred.tolist(), box.tolist()):
  157. jdict.append({'image_id': image_id,
  158. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  159. 'bbox': [round(x, 3) for x in b],
  160. 'score': round(p[4], 5)})
  161. # Assign all predictions as incorrect
  162. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  163. if nl:
  164. detected = [] # target indices
  165. tcls_tensor = labels[:, 0]
  166. # target boxes
  167. tbox = xywh2xyxy(labels[:, 1:5])
  168. scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
  169. if plots:
  170. confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
  171. # Per target class
  172. for cls in torch.unique(tcls_tensor):
  173. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # target indices
  174. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # prediction indices
  175. # Search for detections
  176. if pi.shape[0]:
  177. # Prediction to target ious
  178. ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
  179. # Append detections
  180. detected_set = set()
  181. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  182. d = ti[i[j]] # detected target
  183. if d.item() not in detected_set:
  184. detected_set.add(d.item())
  185. detected.append(d)
  186. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  187. if len(detected) == nl: # all targets already located in image
  188. break
  189. # Append statistics (correct, conf, pcls, tcls)
  190. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  191. # Plot images
  192. if plots and batch_i < 3:
  193. f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
  194. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  195. f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
  196. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  197. # Compute statistics
  198. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  199. if len(stats) and stats[0].any():
  200. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  201. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  202. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  203. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  204. else:
  205. nt = torch.zeros(1)
  206. # Print results
  207. pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
  208. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  209. # Print results per class
  210. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  211. for i, c in enumerate(ap_class):
  212. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  213. # Print speeds
  214. t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image
  215. if not training:
  216. shape = (batch_size, 3, imgsz, imgsz)
  217. print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
  218. # Plots
  219. if plots:
  220. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  221. if wandb_logger and wandb_logger.wandb:
  222. val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
  223. wandb_logger.log({"Validation": val_batches})
  224. if wandb_images:
  225. wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
  226. # Save JSON
  227. if save_json and len(jdict):
  228. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  229. anno_json = '../coco/annotations/instances_val2017.json' # annotations json
  230. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  231. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  232. with open(pred_json, 'w') as f:
  233. json.dump(jdict, f)
  234. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  235. check_requirements(['pycocotools'])
  236. from pycocotools.coco import COCO
  237. from pycocotools.cocoeval import COCOeval
  238. anno = COCO(anno_json) # init annotations api
  239. pred = anno.loadRes(pred_json) # init predictions api
  240. eval = COCOeval(anno, pred, 'bbox')
  241. if is_coco:
  242. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  243. eval.evaluate()
  244. eval.accumulate()
  245. eval.summarize()
  246. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  247. except Exception as e:
  248. print(f'pycocotools unable to run: {e}')
  249. # Return results
  250. model.float() # for training
  251. if not training:
  252. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  253. print(f"Results saved to {save_dir}{s}")
  254. maps = np.zeros(nc) + map
  255. for i, c in enumerate(ap_class):
  256. maps[c] = ap[i]
  257. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  258. if __name__ == '__main__':
  259. parser = argparse.ArgumentParser(prog='test.py')
  260. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  261. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  262. parser.add_argument('--batch-size', type=int, default=32, help='batch size')
  263. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  264. parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
  265. parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
  266. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  267. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  268. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  269. parser.add_argument('--augment', action='store_true', help='augmented inference')
  270. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  271. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  272. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  273. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  274. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  275. parser.add_argument('--project', default='runs/test', help='save to project/name')
  276. parser.add_argument('--name', default='exp', help='save to project/name')
  277. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  278. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  279. opt = parser.parse_args()
  280. opt.save_json |= opt.data.endswith('coco.yaml')
  281. opt.save_txt |= opt.save_hybrid
  282. opt.data = check_file(opt.data) # check file
  283. print(opt)
  284. check_requirements(exclude=('tensorboard', 'thop'))
  285. if opt.task in ('train', 'val', 'test'): # run normally
  286. test(**vars(opt))
  287. elif opt.task == 'speed': # speed benchmarks
  288. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  289. test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
  290. save_json=False, plots=False)
  291. elif opt.task == 'study': # run over a range of settings and save/plot
  292. # python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
  293. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  294. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  295. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  296. y = [] # y axis
  297. for i in x: # img-size
  298. print(f'\nRunning {f} point {i}...')
  299. r, _, t = test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
  300. iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
  301. y.append(r + t) # results and times
  302. np.savetxt(f, y, fmt='%10.4g') # save
  303. os.system('zip -r study.zip study_*.txt')
  304. plot_study_txt(x=x) # plot