No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.

332 líneas
15KB

  1. import argparse
  2. import glob
  3. import json
  4. import os
  5. from pathlib import Path
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, box_iou, \
  13. non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path
  14. from utils.loss import compute_loss
  15. from utils.metrics import ap_per_class, ConfusionMatrix
  16. from utils.plots import plot_images, output_to_target
  17. from utils.torch_utils import select_device, time_synchronized
  18. def test(data,
  19. weights=None,
  20. batch_size=32,
  21. imgsz=640,
  22. conf_thres=0.001,
  23. iou_thres=0.6, # for NMS
  24. save_json=False,
  25. single_cls=False,
  26. augment=False,
  27. verbose=False,
  28. model=None,
  29. dataloader=None,
  30. save_dir=Path(''), # for saving images
  31. save_txt=False, # for auto-labelling
  32. save_conf=False,
  33. plots=True,
  34. log_imgs=0): # number of logged images
  35. # Initialize/load model and set device
  36. training = model is not None
  37. if training: # called by train.py
  38. device = next(model.parameters()).device # get model device
  39. else: # called directly
  40. set_logging()
  41. device = select_device(opt.device, batch_size=batch_size)
  42. save_txt = opt.save_txt # save *.txt labels
  43. # Directories
  44. save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
  45. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  46. # Load model
  47. model = attempt_load(weights, map_location=device) # load FP32 model
  48. imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
  49. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  50. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  51. # model = nn.DataParallel(model)
  52. # Half
  53. half = device.type != 'cpu' # half precision only supported on CUDA
  54. if half:
  55. model.half()
  56. # Configure
  57. model.eval()
  58. is_coco = data.endswith('coco.yaml') # is COCO dataset
  59. with open(data) as f:
  60. data = yaml.load(f, Loader=yaml.FullLoader) # model dict
  61. check_dataset(data) # check
  62. nc = 1 if single_cls else int(data['nc']) # number of classes
  63. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  64. niou = iouv.numel()
  65. # Logging
  66. log_imgs, wandb = min(log_imgs, 100), None # ceil
  67. try:
  68. import wandb # Weights & Biases
  69. except ImportError:
  70. log_imgs = 0
  71. # Dataloader
  72. if not training:
  73. img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
  74. _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
  75. path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
  76. dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0]
  77. seen = 0
  78. confusion_matrix = ConfusionMatrix(nc=nc)
  79. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  80. coco91class = coco80_to_coco91_class()
  81. s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  82. p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
  83. loss = torch.zeros(3, device=device)
  84. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  85. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  86. img = img.to(device, non_blocking=True)
  87. img = img.half() if half else img.float() # uint8 to fp16/32
  88. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  89. targets = targets.to(device)
  90. nb, _, height, width = img.shape # batch size, channels, height, width
  91. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device)
  92. with torch.no_grad():
  93. # Run model
  94. t = time_synchronized()
  95. inf_out, train_out = model(img, augment=augment) # inference and training outputs
  96. t0 += time_synchronized() - t
  97. # Compute loss
  98. if training:
  99. loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
  100. # Run NMS
  101. t = time_synchronized()
  102. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_txt else [] # for autolabelling
  103. output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb)
  104. t1 += time_synchronized() - t
  105. # Statistics per image
  106. for si, pred in enumerate(output):
  107. labels = targets[targets[:, 0] == si, 1:]
  108. nl = len(labels)
  109. tcls = labels[:, 0].tolist() if nl else [] # target class
  110. path = Path(paths[si])
  111. seen += 1
  112. if len(pred) == 0:
  113. if nl:
  114. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  115. continue
  116. # Predictions
  117. predn = pred.clone()
  118. scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
  119. # Append to text file
  120. if save_txt:
  121. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  122. for *xyxy, conf, cls in predn.tolist():
  123. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  124. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  125. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  126. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  127. # W&B logging
  128. if plots and len(wandb_images) < log_imgs:
  129. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  130. "class_id": int(cls),
  131. "box_caption": "%s %.3f" % (names[cls], conf),
  132. "scores": {"class_score": conf},
  133. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  134. boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
  135. wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))
  136. # Append to pycocotools JSON dictionary
  137. if save_json:
  138. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  139. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  140. box = xyxy2xywh(predn[:, :4]) # xywh
  141. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  142. for p, b in zip(pred.tolist(), box.tolist()):
  143. jdict.append({'image_id': image_id,
  144. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  145. 'bbox': [round(x, 3) for x in b],
  146. 'score': round(p[4], 5)})
  147. # Assign all predictions as incorrect
  148. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  149. if nl:
  150. detected = [] # target indices
  151. tcls_tensor = labels[:, 0]
  152. # target boxes
  153. tbox = xywh2xyxy(labels[:, 1:5])
  154. scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
  155. if plots:
  156. confusion_matrix.process_batch(pred, torch.cat((labels[:, 0:1], tbox), 1))
  157. # Per target class
  158. for cls in torch.unique(tcls_tensor):
  159. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
  160. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
  161. # Search for detections
  162. if pi.shape[0]:
  163. # Prediction to target ious
  164. ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
  165. # Append detections
  166. detected_set = set()
  167. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  168. d = ti[i[j]] # detected target
  169. if d.item() not in detected_set:
  170. detected_set.add(d.item())
  171. detected.append(d)
  172. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  173. if len(detected) == nl: # all targets already located in image
  174. break
  175. # Append statistics (correct, conf, pcls, tcls)
  176. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  177. # Plot images
  178. if plots and batch_i < 3:
  179. f = save_dir / f'test_batch{batch_i}_labels.jpg' # filename
  180. plot_images(img, targets, paths, f, names) # labels
  181. f = save_dir / f'test_batch{batch_i}_pred.jpg'
  182. plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions
  183. # Compute statistics
  184. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  185. if len(stats) and stats[0].any():
  186. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  187. p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
  188. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  189. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  190. else:
  191. nt = torch.zeros(1)
  192. # Plots
  193. if plots:
  194. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  195. if wandb and wandb.run:
  196. wandb.log({"Images": wandb_images})
  197. wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]})
  198. # Print results
  199. pf = '%20s' + '%12.3g' * 6 # print format
  200. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  201. # Print results per class
  202. if verbose and nc > 1 and len(stats):
  203. for i, c in enumerate(ap_class):
  204. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  205. # Print speeds
  206. t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
  207. if not training:
  208. print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
  209. # Save JSON
  210. if save_json and len(jdict):
  211. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  212. anno_json = glob.glob('../coco/annotations/instances_val*.json')[0] # annotations json
  213. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  214. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  215. with open(pred_json, 'w') as f:
  216. json.dump(jdict, f)
  217. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  218. from pycocotools.coco import COCO
  219. from pycocotools.cocoeval import COCOeval
  220. anno = COCO(anno_json) # init annotations api
  221. pred = anno.loadRes(pred_json) # init predictions api
  222. eval = COCOeval(anno, pred, 'bbox')
  223. if is_coco:
  224. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  225. eval.evaluate()
  226. eval.accumulate()
  227. eval.summarize()
  228. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  229. except Exception as e:
  230. print('ERROR: pycocotools unable to run: %s' % e)
  231. # Return results
  232. if not training:
  233. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  234. print(f"Results saved to {save_dir}{s}")
  235. model.float() # for training
  236. maps = np.zeros(nc) + map
  237. for i, c in enumerate(ap_class):
  238. maps[c] = ap[i]
  239. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  240. if __name__ == '__main__':
  241. parser = argparse.ArgumentParser(prog='test.py')
  242. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  243. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
  244. parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
  245. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  246. parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
  247. parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
  248. parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
  249. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  250. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  251. parser.add_argument('--augment', action='store_true', help='augmented inference')
  252. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  253. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  254. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  255. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  256. parser.add_argument('--project', default='runs/test', help='save to project/name')
  257. parser.add_argument('--name', default='exp', help='save to project/name')
  258. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  259. opt = parser.parse_args()
  260. opt.save_json |= opt.data.endswith('coco.yaml')
  261. opt.data = check_file(opt.data) # check file
  262. print(opt)
  263. if opt.task in ['val', 'test']: # run normally
  264. test(opt.data,
  265. opt.weights,
  266. opt.batch_size,
  267. opt.img_size,
  268. opt.conf_thres,
  269. opt.iou_thres,
  270. opt.save_json,
  271. opt.single_cls,
  272. opt.augment,
  273. opt.verbose,
  274. save_txt=opt.save_txt,
  275. save_conf=opt.save_conf,
  276. )
  277. elif opt.task == 'study': # run over a range of settings and save/plot
  278. for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
  279. f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
  280. x = list(range(320, 800, 64)) # x axis
  281. y = [] # y axis
  282. for i in x: # img-size
  283. print('\nRunning %s point %s...' % (f, i))
  284. r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
  285. y.append(r + t) # results and times
  286. np.savetxt(f, y, fmt='%10.4g') # save
  287. os.system('zip -r study.zip study_*.txt')
  288. # utils.plots.plot_study_txt(f, x) # plot