|
- # Exports a pytorch *.pt model to *.onnx format
- # Example usage (run from ./yolov5 directory):
- # $ export PYTHONPATH="$PWD" && python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
-
- import argparse
-
- import onnx
-
- from models.common import *
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default='./weights/yolov5s.pt', help='weights path')
- parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- opt = parser.parse_args()
- print(opt)
-
- # Parameters
- f = opt.weights.replace('.pt', '.onnx') # onnx filename
- img = torch.zeros((opt.batch_size, 3, opt.img_size, opt.img_size)) # image size, (1, 3, 320, 192) iDetection
-
- # Load pytorch model
- google_utils.attempt_download(opt.weights)
- model = torch.load(opt.weights)['model']
- model.eval()
- # model.fuse()
-
- # Export to onnx
- model.model[-1].export = True # set Detect() layer export=True
- torch.onnx.export(model, img, f, verbose=False, opset_version=11)
-
- # Check onnx model
- model = onnx.load(f) # load onnx model
- onnx.checker.check_model(model) # check onnx model
- print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph
- print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)
|