選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。
Glenn Jocher 60e42e16c2
Update autobatch.py (#5536)
3年前
.github Delete code-format.yml (#5487) 3年前
data Add pre-commit CI actions (#4982) 3年前
models Suppress ONNX export trace warning (#5437) 3年前
utils Update autobatch.py (#5536) 3年前
.dockerignore Add TensorFlow formats to `export.py` (#4479) 3年前
.gitattributes git attrib 4年前
.gitignore Add pre-commit CI actions (#4982) 3年前
.pre-commit-config.yaml precommit: isort (#5493) 3年前
CONTRIBUTING.md Fixed a small typo in CONTRIBUTING.md (#5445) 3年前
Dockerfile Update Dockerfile to `ADD` Arial.ttf (#5084) 3年前
LICENSE Add pre-commit CI actions (#4982) 3年前
README.md Update README.md (#5438) 3年前
detect.py Fix detect.py URL inference (#5525) 3年前
export.py precommit: isort (#5493) 3年前
hubconf.py precommit: isort (#5493) 3年前
requirements.txt Add `requests` to requirements.txt (#5112) 3年前
setup.cfg precommit: isort (#5493) 3年前
train.py Common `is_coco` logic betwen train.py and val.py (#5521) 3年前
tutorial.ipynb Keras CI fix (#5486) 3年前
val.py precommit: isort (#5493) 3年前

README.md


CI CPU testing YOLOv5 Citation Docker Pulls
Open In Colab Open In Kaggle Join Forum


YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

Documentation

See the YOLOv5 Docs for full documentation on training, testing and deployment.

Quick Start Examples

Install

Python>=3.6.0 is required with all requirements.txt installed including PyTorch>=1.7:

$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt

Inference

Inference with YOLOv5 and PyTorch Hub. Models automatically download from the latest YOLOv5 release.

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5l, yolov5x, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

Inference with detect.py

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ python detect.py --source 0  # webcam
                            file.jpg  # image
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Training

Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16

Tutorials

Environments

Get started in seconds with our verified environments. Click each icon below for details.

Integrations

Weights and Biases Roboflow ⭐ NEW
Automatically track and visualize all your YOLOv5 training runs in the cloud with Weights & Biases Label and export your custom datasets directly to YOLOv5 for training with Roboflow

Why YOLOv5

YOLOv5-P5 640 Figure (click to expand)

Figure Notes (click to expand)

  • COCO AP val denotes mAP@0.5:0.95 metric measured on the 5000-image COCO val2017 dataset over various inference sizes from 256 to 1536.
  • GPU Speed measures average inference time per image on COCO val2017 dataset using a AWS p3.2xlarge V100 instance at batch-size 32.
  • EfficientDet data from google/automl at batch size 8.
  • Reproduce by python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt

Pretrained Checkpoints

Model size
(pixels)
mAPval
0.5:0.95
mAPval
0.5
Speed
CPU b1
(ms)
Speed
V100 b1
(ms)
Speed
V100 b32
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5n 640 28.4 46.0 45 6.3 0.6 1.9 4.5
YOLOv5s 640 37.2 56.0 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.2 63.9 224 8.2 1.7 21.2 49.0
YOLOv5l 640 48.8 67.2 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7
YOLOv5n6 1280 34.0 50.7 153 8.1 2.1 3.2 4.6
YOLOv5s6 1280 44.5 63.0 385 8.2 3.6 16.8 12.6
YOLOv5m6 1280 51.0 69.0 887 11.1 6.8 35.7 50.0
YOLOv5l6 1280 53.6 71.6 1784 15.8 10.5 76.8 111.4
YOLOv5x6
+ TTA
1280
1536
54.7
55.4
72.4
72.3
3136
-
26.2
-
19.4
-
140.7
-
209.8
-

Table Notes (click to expand)

  • All checkpoints are trained to 300 epochs with default settings and hyperparameters.
  • mAPval values are for single-model single-scale on COCO val2017 dataset.
    Reproduce by python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
  • Speed averaged over COCO val images using a AWS p3.2xlarge instance. NMS times (~1 ms/img) not included.
    Reproduce by python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
  • TTA Test Time Augmentation includes reflection and scale augmentations.
    Reproduce by python val.py --data coco.yaml --img 1536 --iou 0.7 --augment

Contribute

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to send us feedback on your experiences. Thank you to all our contributors!

Contact

For YOLOv5 bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please visit https://ultralytics.com/contact.