You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

269 lines
12KB

  1. import argparse
  2. import json
  3. import yaml
  4. from torch.utils.data import DataLoader
  5. from utils.datasets import *
  6. from utils.utils import *
  7. def test(data,
  8. weights=None,
  9. batch_size=16,
  10. imgsz=640,
  11. conf_thres=0.001,
  12. iou_thres=0.6, # for nms
  13. save_json=False,
  14. single_cls=False,
  15. augment=False,
  16. model=None,
  17. dataloader=None,
  18. multi_label=True,
  19. verbose=False): # 0 fast, 1 accurate
  20. # Initialize/load model and set device
  21. if model is None:
  22. device = torch_utils.select_device(opt.device, batch_size=batch_size)
  23. # Remove previous
  24. for f in glob.glob('test_batch*.jpg'):
  25. os.remove(f)
  26. # Load model
  27. google_utils.attempt_download(weights)
  28. model = torch.load(weights, map_location=device)['model']
  29. torch_utils.model_info(model)
  30. # Fuse
  31. # model.fuse()
  32. model.to(device)
  33. if device.type != 'cpu' and torch.cuda.device_count() > 1:
  34. model = nn.DataParallel(model)
  35. training = False
  36. else: # called by train.py
  37. device = next(model.parameters()).device # get model device
  38. training = True
  39. # Configure run
  40. with open(data) as f:
  41. data = yaml.load(f, Loader=yaml.FullLoader) # model dict
  42. nc = 1 if single_cls else int(data['nc']) # number of classes
  43. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  44. # iouv = iouv[0].view(1) # comment for mAP@0.5:0.95
  45. niou = iouv.numel()
  46. # Dataloader
  47. if dataloader is None:
  48. path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
  49. dataset = LoadImagesAndLabels(path, imgsz, batch_size, rect=True, single_cls=opt.single_cls)
  50. batch_size = min(batch_size, len(dataset))
  51. dataloader = DataLoader(dataset,
  52. batch_size=batch_size,
  53. num_workers=min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]),
  54. pin_memory=True,
  55. collate_fn=dataset.collate_fn)
  56. seen = 0
  57. model.eval()
  58. _ = model(torch.zeros((1, 3, imgsz, imgsz), device=device)) if device.type != 'cpu' else None # run once
  59. coco91class = coco80_to_coco91_class()
  60. s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  61. p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
  62. loss = torch.zeros(3, device=device)
  63. jdict, stats, ap, ap_class = [], [], [], []
  64. for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  65. imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
  66. targets = targets.to(device)
  67. nb, _, height, width = imgs.shape # batch size, channels, height, width
  68. whwh = torch.Tensor([width, height, width, height]).to(device)
  69. # Disable gradients
  70. with torch.no_grad():
  71. # Run model
  72. t = torch_utils.time_synchronized()
  73. inf_out, train_out = model(imgs, augment=augment) # inference and training outputs
  74. t0 += torch_utils.time_synchronized() - t
  75. # Compute loss
  76. if training: # if model has loss hyperparameters
  77. loss += compute_loss(train_out, targets, model)[1][:3] # GIoU, obj, cls
  78. # Run NMS
  79. t = torch_utils.time_synchronized()
  80. output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, multi_label=multi_label)
  81. t1 += torch_utils.time_synchronized() - t
  82. # Statistics per image
  83. for si, pred in enumerate(output):
  84. labels = targets[targets[:, 0] == si, 1:]
  85. nl = len(labels)
  86. tcls = labels[:, 0].tolist() if nl else [] # target class
  87. seen += 1
  88. if pred is None:
  89. if nl:
  90. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  91. continue
  92. # Append to text file
  93. # with open('test.txt', 'a') as file:
  94. # [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
  95. # Clip boxes to image bounds
  96. clip_coords(pred, (height, width))
  97. # Append to pycocotools JSON dictionary
  98. if save_json:
  99. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  100. image_id = int(Path(paths[si]).stem.split('_')[-1])
  101. box = pred[:, :4].clone() # xyxy
  102. scale_coords(imgs[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
  103. box = xyxy2xywh(box) # xywh
  104. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  105. for p, b in zip(pred.tolist(), box.tolist()):
  106. jdict.append({'image_id': image_id,
  107. 'category_id': coco91class[int(p[5])],
  108. 'bbox': [round(x, 3) for x in b],
  109. 'score': round(p[4], 5)})
  110. # Assign all predictions as incorrect
  111. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  112. if nl:
  113. detected = [] # target indices
  114. tcls_tensor = labels[:, 0]
  115. # target boxes
  116. tbox = xywh2xyxy(labels[:, 1:5]) * whwh
  117. # Per target class
  118. for cls in torch.unique(tcls_tensor):
  119. ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices
  120. pi = (cls == pred[:, 5]).nonzero().view(-1) # target indices
  121. # Search for detections
  122. if pi.shape[0]:
  123. # Prediction to target ious
  124. ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
  125. # Append detections
  126. for j in (ious > iouv[0]).nonzero():
  127. d = ti[i[j]] # detected target
  128. if d not in detected:
  129. detected.append(d)
  130. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  131. if len(detected) == nl: # all targets already located in image
  132. break
  133. # Append statistics (correct, conf, pcls, tcls)
  134. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  135. # Plot images
  136. if batch_i < 1:
  137. f = 'test_batch%g_gt.jpg' % batch_i # filename
  138. plot_images(imgs, targets, paths, f, model.names) # ground truth
  139. f = 'test_batch%g_pred.jpg' % batch_i
  140. plot_images(imgs, output_to_target(output, width, height), paths, f, model.names) # predictions
  141. # Compute statistics
  142. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  143. if len(stats):
  144. p, r, ap, f1, ap_class = ap_per_class(*stats)
  145. p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
  146. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  147. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  148. else:
  149. nt = torch.zeros(1)
  150. # Print results
  151. pf = '%20s' + '%12.3g' * 6 # print format
  152. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  153. # Print results per class
  154. if verbose and nc > 1 and len(stats):
  155. for i, c in enumerate(ap_class):
  156. print(pf % (model.names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  157. # Print speeds
  158. t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
  159. if not training:
  160. print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
  161. # Save JSON
  162. if save_json and map50 and len(jdict):
  163. imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
  164. f = 'detections_val2017_%s_results.json' % \
  165. (weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename
  166. print('\nCOCO mAP with pycocotools... saving %s...' % f)
  167. with open(f, 'w') as file:
  168. json.dump(jdict, file)
  169. try:
  170. from pycocotools.coco import COCO
  171. from pycocotools.cocoeval import COCOeval
  172. # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  173. cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
  174. cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
  175. cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
  176. cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
  177. cocoEval.evaluate()
  178. cocoEval.accumulate()
  179. cocoEval.summarize()
  180. map, map50 = cocoEval.stats[:2] # update to pycocotools results (mAP@0.5:0.95, mAP@0.5)
  181. except:
  182. print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
  183. 'See https://github.com/cocodataset/cocoapi/issues/356')
  184. # Return results
  185. maps = np.zeros(nc) + map
  186. for i, c in enumerate(ap_class):
  187. maps[c] = ap[i]
  188. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  189. if __name__ == '__main__':
  190. parser = argparse.ArgumentParser(prog='test.py')
  191. parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
  192. parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
  193. parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
  194. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  195. parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
  196. parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
  197. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  198. parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
  199. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  200. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  201. parser.add_argument('--augment', action='store_true', help='augmented inference')
  202. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  203. opt = parser.parse_args()
  204. opt.save_json = opt.save_json or opt.data.endswith(os.sep + 'coco.yaml')
  205. opt.data = glob.glob('./**/' + opt.data, recursive=True)[0] # find file
  206. print(opt)
  207. # task = 'val', 'test', 'study'
  208. if opt.task == 'val': # (default) run normally
  209. test(opt.data,
  210. opt.weights,
  211. opt.batch_size,
  212. opt.img_size,
  213. opt.conf_thres,
  214. opt.iou_thres,
  215. opt.save_json,
  216. opt.single_cls,
  217. opt.augment)
  218. elif opt.task == 'study': # run over a range of settings and save/plot
  219. for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
  220. f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
  221. x = list(range(256, 1024, 32)) # x axis
  222. y = [] # y axis
  223. for i in x: # img-size
  224. print('\nRunning %s point %s...' % (f, i))
  225. r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
  226. y.append(r + t) # results and times
  227. np.savetxt(f, y, fmt='%10.4g') # save
  228. plot_study_txt(f, x) # plot