You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

625 lines
33KB

  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import time
  7. import warnings
  8. from copy import deepcopy
  9. from pathlib import Path
  10. from threading import Thread
  11. import numpy as np
  12. import torch.distributed as dist
  13. import torch.nn as nn
  14. import torch.nn.functional as F
  15. import torch.optim as optim
  16. import torch.optim.lr_scheduler as lr_scheduler
  17. import torch.utils.data
  18. import yaml
  19. from torch.cuda import amp
  20. from torch.nn.parallel import DistributedDataParallel as DDP
  21. from torch.utils.tensorboard import SummaryWriter
  22. from tqdm import tqdm
  23. import test # import test.py to get mAP after each epoch
  24. from models.experimental import attempt_load
  25. from models.yolo import Model
  26. from utils.autoanchor import check_anchors
  27. from utils.datasets import create_dataloader
  28. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  29. fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  30. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  31. from utils.google_utils import attempt_download
  32. from utils.loss import ComputeLoss
  33. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  34. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
  35. from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
  36. logger = logging.getLogger(__name__)
  37. def train(hyp, opt, device, tb_writer=None):
  38. logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  39. save_dir, epochs, batch_size, total_batch_size, weights, rank, single_cls = \
  40. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank, \
  41. opt.single_cls
  42. # Directories
  43. wdir = save_dir / 'weights'
  44. wdir.mkdir(parents=True, exist_ok=True) # make dir
  45. last = wdir / 'last.pt'
  46. best = wdir / 'best.pt'
  47. results_file = save_dir / 'results.txt'
  48. # Save run settings
  49. with open(save_dir / 'hyp.yaml', 'w') as f:
  50. yaml.safe_dump(hyp, f, sort_keys=False)
  51. with open(save_dir / 'opt.yaml', 'w') as f:
  52. yaml.safe_dump(vars(opt), f, sort_keys=False)
  53. # Configure
  54. plots = not opt.evolve # create plots
  55. cuda = device.type != 'cpu'
  56. init_seeds(2 + rank)
  57. with open(opt.data) as f:
  58. data_dict = yaml.safe_load(f) # data dict
  59. # Logging- Doing this before checking the dataset. Might update data_dict
  60. loggers = {'wandb': None} # loggers dict
  61. if rank in [-1, 0]:
  62. opt.hyp = hyp # add hyperparameters
  63. run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
  64. wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
  65. loggers['wandb'] = wandb_logger.wandb
  66. data_dict = wandb_logger.data_dict
  67. if wandb_logger.wandb:
  68. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update weights, epochs if resuming
  69. nc = 1 if single_cls else int(data_dict['nc']) # number of classes
  70. names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  71. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  72. is_coco = opt.data.endswith('coco.yaml') and nc == 80 # COCO dataset
  73. # Model
  74. pretrained = weights.endswith('.pt')
  75. if pretrained:
  76. with torch_distributed_zero_first(rank):
  77. weights = attempt_download(weights) # download if not found locally
  78. ckpt = torch.load(weights, map_location=device) # load checkpoint
  79. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  80. exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
  81. state_dict = ckpt['model'].float().state_dict() # to FP32
  82. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  83. model.load_state_dict(state_dict, strict=False) # load
  84. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  85. else:
  86. model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  87. with torch_distributed_zero_first(rank):
  88. check_dataset(data_dict) # check
  89. train_path = data_dict['train']
  90. test_path = data_dict['val']
  91. # Freeze
  92. freeze = [] # parameter names to freeze (full or partial)
  93. for k, v in model.named_parameters():
  94. v.requires_grad = True # train all layers
  95. if any(x in k for x in freeze):
  96. print('freezing %s' % k)
  97. v.requires_grad = False
  98. # Optimizer
  99. nbs = 64 # nominal batch size
  100. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  101. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  102. logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  103. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  104. for k, v in model.named_modules():
  105. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  106. pg2.append(v.bias) # biases
  107. if isinstance(v, nn.BatchNorm2d):
  108. pg0.append(v.weight) # no decay
  109. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  110. pg1.append(v.weight) # apply decay
  111. if opt.adam:
  112. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  113. else:
  114. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  115. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  116. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  117. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  118. del pg0, pg1, pg2
  119. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  120. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  121. if opt.linear_lr:
  122. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  123. else:
  124. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  125. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  126. # plot_lr_scheduler(optimizer, scheduler, epochs)
  127. # EMA
  128. ema = ModelEMA(model) if rank in [-1, 0] else None
  129. # Resume
  130. start_epoch, best_fitness = 0, 0.0
  131. if pretrained:
  132. # Optimizer
  133. if ckpt['optimizer'] is not None:
  134. optimizer.load_state_dict(ckpt['optimizer'])
  135. best_fitness = ckpt['best_fitness']
  136. # EMA
  137. if ema and ckpt.get('ema'):
  138. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  139. ema.updates = ckpt['updates']
  140. # Results
  141. if ckpt.get('training_results') is not None:
  142. results_file.write_text(ckpt['training_results']) # write results.txt
  143. # Epochs
  144. start_epoch = ckpt['epoch'] + 1
  145. if opt.resume:
  146. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  147. if epochs < start_epoch:
  148. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  149. (weights, ckpt['epoch'], epochs))
  150. epochs += ckpt['epoch'] # finetune additional epochs
  151. del ckpt, state_dict
  152. # Image sizes
  153. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  154. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  155. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  156. # DP mode
  157. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  158. model = torch.nn.DataParallel(model)
  159. # SyncBatchNorm
  160. if opt.sync_bn and cuda and rank != -1:
  161. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  162. logger.info('Using SyncBatchNorm()')
  163. # Trainloader
  164. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, single_cls,
  165. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
  166. world_size=opt.world_size, workers=opt.workers,
  167. image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
  168. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  169. nb = len(dataloader) # number of batches
  170. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  171. # Process 0
  172. if rank in [-1, 0]:
  173. testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, single_cls,
  174. hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
  175. world_size=opt.world_size, workers=opt.workers,
  176. pad=0.5, prefix=colorstr('val: '))[0]
  177. if not opt.resume:
  178. labels = np.concatenate(dataset.labels, 0)
  179. c = torch.tensor(labels[:, 0]) # classes
  180. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  181. # model._initialize_biases(cf.to(device))
  182. if plots:
  183. plot_labels(labels, names, save_dir, loggers)
  184. if tb_writer:
  185. tb_writer.add_histogram('classes', c, 0)
  186. # Anchors
  187. if not opt.noautoanchor:
  188. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  189. model.half().float() # pre-reduce anchor precision
  190. # DDP mode
  191. if cuda and rank != -1:
  192. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
  193. # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
  194. find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
  195. # Model parameters
  196. hyp['box'] *= 3. / nl # scale to layers
  197. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  198. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  199. hyp['label_smoothing'] = opt.label_smoothing
  200. model.nc = nc # attach number of classes to model
  201. model.hyp = hyp # attach hyperparameters to model
  202. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  203. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  204. model.names = names
  205. # Start training
  206. t0 = time.time()
  207. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  208. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  209. maps = np.zeros(nc) # mAP per class
  210. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  211. scheduler.last_epoch = start_epoch - 1 # do not move
  212. scaler = amp.GradScaler(enabled=cuda)
  213. compute_loss = ComputeLoss(model) # init loss class
  214. logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
  215. f'Using {dataloader.num_workers} dataloader workers\n'
  216. f'Logging results to {save_dir}\n'
  217. f'Starting training for {epochs} epochs...')
  218. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  219. model.train()
  220. # Update image weights (optional)
  221. if opt.image_weights:
  222. # Generate indices
  223. if rank in [-1, 0]:
  224. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  225. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  226. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  227. # Broadcast if DDP
  228. if rank != -1:
  229. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  230. dist.broadcast(indices, 0)
  231. if rank != 0:
  232. dataset.indices = indices.cpu().numpy()
  233. # Update mosaic border
  234. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  235. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  236. mloss = torch.zeros(4, device=device) # mean losses
  237. if rank != -1:
  238. dataloader.sampler.set_epoch(epoch)
  239. pbar = enumerate(dataloader)
  240. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
  241. if rank in [-1, 0]:
  242. pbar = tqdm(pbar, total=nb) # progress bar
  243. optimizer.zero_grad()
  244. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  245. ni = i + nb * epoch # number integrated batches (since train start)
  246. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  247. # Warmup
  248. if ni <= nw:
  249. xi = [0, nw] # x interp
  250. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  251. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  252. for j, x in enumerate(optimizer.param_groups):
  253. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  254. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  255. if 'momentum' in x:
  256. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  257. # Multi-scale
  258. if opt.multi_scale:
  259. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  260. sf = sz / max(imgs.shape[2:]) # scale factor
  261. if sf != 1:
  262. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  263. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  264. # Forward
  265. with amp.autocast(enabled=cuda):
  266. pred = model(imgs) # forward
  267. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  268. if rank != -1:
  269. loss *= opt.world_size # gradient averaged between devices in DDP mode
  270. if opt.quad:
  271. loss *= 4.
  272. # Backward
  273. scaler.scale(loss).backward()
  274. # Optimize
  275. if ni % accumulate == 0:
  276. scaler.step(optimizer) # optimizer.step
  277. scaler.update()
  278. optimizer.zero_grad()
  279. if ema:
  280. ema.update(model)
  281. # Print
  282. if rank in [-1, 0]:
  283. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  284. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  285. s = ('%10s' * 2 + '%10.4g' * 6) % (
  286. f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
  287. pbar.set_description(s)
  288. # Plot
  289. if plots and ni < 3:
  290. f = save_dir / f'train_batch{ni}.jpg' # filename
  291. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  292. if tb_writer and ni == 0:
  293. with warnings.catch_warnings():
  294. warnings.simplefilter('ignore') # suppress jit trace warning
  295. tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
  296. elif plots and ni == 10 and wandb_logger.wandb:
  297. wandb_logger.log({'Mosaics': [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
  298. save_dir.glob('train*.jpg') if x.exists()]})
  299. # end batch ------------------------------------------------------------------------------------------------
  300. # end epoch ----------------------------------------------------------------------------------------------------
  301. # Scheduler
  302. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  303. scheduler.step()
  304. # DDP process 0 or single-GPU
  305. if rank in [-1, 0]:
  306. # mAP
  307. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  308. final_epoch = epoch + 1 == epochs
  309. if not opt.notest or final_epoch: # Calculate mAP
  310. wandb_logger.current_epoch = epoch + 1
  311. results, maps, _ = test.test(data_dict,
  312. batch_size=batch_size * 2,
  313. imgsz=imgsz_test,
  314. model=ema.ema,
  315. single_cls=single_cls,
  316. dataloader=testloader,
  317. save_dir=save_dir,
  318. save_json=is_coco and final_epoch,
  319. verbose=nc < 50 and final_epoch,
  320. plots=plots and final_epoch,
  321. wandb_logger=wandb_logger,
  322. compute_loss=compute_loss)
  323. # Write
  324. with open(results_file, 'a') as f:
  325. f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
  326. # Log
  327. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  328. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  329. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  330. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  331. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  332. if tb_writer:
  333. tb_writer.add_scalar(tag, x, epoch) # tensorboard
  334. if wandb_logger.wandb:
  335. wandb_logger.log({tag: x}) # W&B
  336. # Update best mAP
  337. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  338. if fi > best_fitness:
  339. best_fitness = fi
  340. wandb_logger.end_epoch(best_result=best_fitness == fi)
  341. # Save model
  342. if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
  343. ckpt = {'epoch': epoch,
  344. 'best_fitness': best_fitness,
  345. 'training_results': results_file.read_text(),
  346. 'model': deepcopy(de_parallel(model)).half(),
  347. 'ema': deepcopy(ema.ema).half(),
  348. 'updates': ema.updates,
  349. 'optimizer': optimizer.state_dict(),
  350. 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
  351. # Save last, best and delete
  352. torch.save(ckpt, last)
  353. if best_fitness == fi:
  354. torch.save(ckpt, best)
  355. if wandb_logger.wandb:
  356. if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
  357. wandb_logger.log_model(
  358. last.parent, opt, epoch, fi, best_model=best_fitness == fi)
  359. del ckpt
  360. # end epoch ----------------------------------------------------------------------------------------------------
  361. # end training
  362. if rank in [-1, 0]:
  363. logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
  364. if plots:
  365. plot_results(save_dir=save_dir) # save as results.png
  366. if wandb_logger.wandb:
  367. files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
  368. wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
  369. if (save_dir / f).exists()]})
  370. if not opt.evolve:
  371. if is_coco: # COCO dataset
  372. for m in [last, best] if best.exists() else [last]: # speed, mAP tests
  373. results, _, _ = test.test(opt.data,
  374. batch_size=batch_size * 2,
  375. imgsz=imgsz_test,
  376. conf_thres=0.001,
  377. iou_thres=0.7,
  378. model=attempt_load(m, device).half(),
  379. single_cls=single_cls,
  380. dataloader=testloader,
  381. save_dir=save_dir,
  382. save_json=True,
  383. plots=False)
  384. # Strip optimizers
  385. for f in last, best:
  386. if f.exists():
  387. strip_optimizer(f) # strip optimizers
  388. if wandb_logger.wandb: # Log the stripped model
  389. wandb_logger.wandb.log_artifact(str(best if best.exists() else last), type='model',
  390. name='run_' + wandb_logger.wandb_run.id + '_model',
  391. aliases=['latest', 'best', 'stripped'])
  392. wandb_logger.finish_run()
  393. else:
  394. dist.destroy_process_group()
  395. torch.cuda.empty_cache()
  396. return results
  397. if __name__ == '__main__':
  398. parser = argparse.ArgumentParser()
  399. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  400. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  401. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  402. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
  403. parser.add_argument('--epochs', type=int, default=300)
  404. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  405. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  406. parser.add_argument('--rect', action='store_true', help='rectangular training')
  407. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  408. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  409. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  410. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  411. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  412. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  413. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  414. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  415. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  416. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  417. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  418. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  419. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  420. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  421. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  422. parser.add_argument('--project', default='runs/train', help='save to project/name')
  423. parser.add_argument('--entity', default=None, help='W&B entity')
  424. parser.add_argument('--name', default='exp', help='save to project/name')
  425. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  426. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  427. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  428. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  429. parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
  430. parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
  431. parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
  432. parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
  433. opt = parser.parse_args()
  434. # Set DDP variables
  435. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  436. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  437. set_logging(opt.global_rank)
  438. if opt.global_rank in [-1, 0]:
  439. check_git_status()
  440. check_requirements(exclude=['thop'])
  441. # Resume
  442. wandb_run = check_wandb_resume(opt)
  443. if opt.resume and not wandb_run: # resume an interrupted run
  444. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  445. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  446. apriori = opt.global_rank, opt.local_rank
  447. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  448. opt = argparse.Namespace(**yaml.safe_load(f)) # replace
  449. opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = \
  450. '', ckpt, True, opt.total_batch_size, *apriori # reinstate
  451. logger.info('Resuming training from %s' % ckpt)
  452. else:
  453. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  454. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  455. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  456. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  457. opt.name = 'evolve' if opt.evolve else opt.name
  458. opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve))
  459. # DDP mode
  460. opt.total_batch_size = opt.batch_size
  461. device = select_device(opt.device, batch_size=opt.batch_size)
  462. if opt.local_rank != -1:
  463. assert torch.cuda.device_count() > opt.local_rank
  464. torch.cuda.set_device(opt.local_rank)
  465. device = torch.device('cuda', opt.local_rank)
  466. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  467. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  468. assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
  469. opt.batch_size = opt.total_batch_size // opt.world_size
  470. # Hyperparameters
  471. with open(opt.hyp) as f:
  472. hyp = yaml.safe_load(f) # load hyps
  473. # Train
  474. logger.info(opt)
  475. if not opt.evolve:
  476. tb_writer = None # init loggers
  477. if opt.global_rank in [-1, 0]:
  478. prefix = colorstr('tensorboard: ')
  479. logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
  480. tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
  481. train(hyp, opt, device, tb_writer)
  482. # Evolve hyperparameters (optional)
  483. else:
  484. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  485. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  486. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  487. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  488. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  489. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  490. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  491. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  492. 'box': (1, 0.02, 0.2), # box loss gain
  493. 'cls': (1, 0.2, 4.0), # cls loss gain
  494. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  495. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  496. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  497. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  498. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  499. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  500. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  501. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  502. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  503. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  504. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  505. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  506. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  507. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  508. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  509. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  510. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  511. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  512. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  513. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  514. opt.notest, opt.nosave = True, True # only test/save final epoch
  515. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  516. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  517. if opt.bucket:
  518. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  519. for _ in range(300): # generations to evolve
  520. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  521. # Select parent(s)
  522. parent = 'single' # parent selection method: 'single' or 'weighted'
  523. x = np.loadtxt('evolve.txt', ndmin=2)
  524. n = min(5, len(x)) # number of previous results to consider
  525. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  526. w = fitness(x) - fitness(x).min() # weights
  527. if parent == 'single' or len(x) == 1:
  528. # x = x[random.randint(0, n - 1)] # random selection
  529. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  530. elif parent == 'weighted':
  531. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  532. # Mutate
  533. mp, s = 0.8, 0.2 # mutation probability, sigma
  534. npr = np.random
  535. npr.seed(int(time.time()))
  536. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  537. ng = len(meta)
  538. v = np.ones(ng)
  539. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  540. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  541. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  542. hyp[k] = float(x[i + 7] * v[i]) # mutate
  543. # Constrain to limits
  544. for k, v in meta.items():
  545. hyp[k] = max(hyp[k], v[1]) # lower limit
  546. hyp[k] = min(hyp[k], v[2]) # upper limit
  547. hyp[k] = round(hyp[k], 5) # significant digits
  548. # Train mutation
  549. results = train(hyp.copy(), opt, device)
  550. # Write mutation results
  551. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  552. # Plot results
  553. plot_evolution(yaml_file)
  554. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  555. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')