|
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- General utils
- """
-
- import contextlib
- import glob
- import inspect
- import logging
- import math
- import os
- import platform
- import random
- import re
- import shutil
- import signal
- import threading
- import time
- import urllib
- from datetime import datetime
- from itertools import repeat
- from multiprocessing.pool import ThreadPool
- from pathlib import Path
- from subprocess import check_output
- from typing import Optional
- from zipfile import ZipFile
-
- import cv2
- import numpy as np
- import pandas as pd
- import pkg_resources as pkg
- import torch
- import torchvision
- import yaml
-
- from utils.downloads import gsutil_getsize
- from utils.metrics import box_iou, fitness
-
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1] # YOLOv5 root directory
- RANK = int(os.getenv('RANK', -1))
-
- # Settings
- DATASETS_DIR = ROOT.parent / 'datasets' # YOLOv5 datasets directory
- NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
- AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
- VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
- FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
-
- torch.set_printoptions(linewidth=320, precision=5, profile='long')
- np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
- pd.options.display.max_columns = 10
- cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
- os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
- os.environ['OMP_NUM_THREADS'] = str(NUM_THREADS) # OpenMP max threads (PyTorch and SciPy)
-
-
- def is_kaggle():
- # Is environment a Kaggle Notebook?
- try:
- assert os.environ.get('PWD') == '/kaggle/working'
- assert os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
- return True
- except AssertionError:
- return False
-
-
- def is_writeable(dir, test=False):
- # Return True if directory has write permissions, test opening a file with write permissions if test=True
- if not test:
- return os.access(dir, os.R_OK) # possible issues on Windows
- file = Path(dir) / 'tmp.txt'
- try:
- with open(file, 'w'): # open file with write permissions
- pass
- file.unlink() # remove file
- return True
- except OSError:
- return False
-
-
- def set_logging(name=None, verbose=VERBOSE):
- # Sets level and returns logger
- if is_kaggle():
- for h in logging.root.handlers:
- logging.root.removeHandler(h) # remove all handlers associated with the root logger object
- rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
- level = logging.INFO if verbose and rank in {-1, 0} else logging.WARNING
- log = logging.getLogger(name)
- log.setLevel(level)
- handler = logging.StreamHandler()
- handler.setFormatter(logging.Formatter("%(message)s"))
- handler.setLevel(level)
- log.addHandler(handler)
-
-
- set_logging() # run before defining LOGGER
- LOGGER = logging.getLogger("yolov5") # define globally (used in train.py, val.py, detect.py, etc.)
-
-
- def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
- # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
- env = os.getenv(env_var)
- if env:
- path = Path(env) # use environment variable
- else:
- cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
- path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
- path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
- path.mkdir(exist_ok=True) # make if required
- return path
-
-
- CONFIG_DIR = user_config_dir() # Ultralytics settings dir
-
-
- class Profile(contextlib.ContextDecorator):
- # Usage: @Profile() decorator or 'with Profile():' context manager
- def __enter__(self):
- self.start = time.time()
-
- def __exit__(self, type, value, traceback):
- print(f'Profile results: {time.time() - self.start:.5f}s')
-
-
- class Timeout(contextlib.ContextDecorator):
- # Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
- def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
- self.seconds = int(seconds)
- self.timeout_message = timeout_msg
- self.suppress = bool(suppress_timeout_errors)
-
- def _timeout_handler(self, signum, frame):
- raise TimeoutError(self.timeout_message)
-
- def __enter__(self):
- if platform.system() != 'Windows': # not supported on Windows
- signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
- signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
-
- def __exit__(self, exc_type, exc_val, exc_tb):
- if platform.system() != 'Windows':
- signal.alarm(0) # Cancel SIGALRM if it's scheduled
- if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
- return True
-
-
- class WorkingDirectory(contextlib.ContextDecorator):
- # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
- def __init__(self, new_dir):
- self.dir = new_dir # new dir
- self.cwd = Path.cwd().resolve() # current dir
-
- def __enter__(self):
- os.chdir(self.dir)
-
- def __exit__(self, exc_type, exc_val, exc_tb):
- os.chdir(self.cwd)
-
-
- def try_except(func):
- # try-except function. Usage: @try_except decorator
- def handler(*args, **kwargs):
- try:
- func(*args, **kwargs)
- except Exception as e:
- print(e)
-
- return handler
-
-
- def threaded(func):
- # Multi-threads a target function and returns thread. Usage: @threaded decorator
- def wrapper(*args, **kwargs):
- thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
- thread.start()
- return thread
-
- return wrapper
-
-
- def methods(instance):
- # Get class/instance methods
- return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
-
-
- def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False):
- # Print function arguments (optional args dict)
- x = inspect.currentframe().f_back # previous frame
- file, _, fcn, _, _ = inspect.getframeinfo(x)
- if args is None: # get args automatically
- args, _, _, frm = inspect.getargvalues(x)
- args = {k: v for k, v in frm.items() if k in args}
- s = (f'{Path(file).stem}: ' if show_file else '') + (f'{fcn}: ' if show_fcn else '')
- LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
-
-
- def init_seeds(seed=0):
- # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
- # cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
- import torch.backends.cudnn as cudnn
- random.seed(seed)
- np.random.seed(seed)
- torch.manual_seed(seed)
- cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
-
-
- def intersect_dicts(da, db, exclude=()):
- # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
- return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
-
-
- def get_latest_run(search_dir='.'):
- # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
- last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
- return max(last_list, key=os.path.getctime) if last_list else ''
-
-
- def is_docker():
- # Is environment a Docker container?
- return Path('/workspace').exists() # or Path('/.dockerenv').exists()
-
-
- def is_colab():
- # Is environment a Google Colab instance?
- try:
- import google.colab
- return True
- except ImportError:
- return False
-
-
- def is_pip():
- # Is file in a pip package?
- return 'site-packages' in Path(__file__).resolve().parts
-
-
- def is_ascii(s=''):
- # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
- s = str(s) # convert list, tuple, None, etc. to str
- return len(s.encode().decode('ascii', 'ignore')) == len(s)
-
-
- def is_chinese(s='人工智能'):
- # Is string composed of any Chinese characters?
- return bool(re.search('[\u4e00-\u9fff]', str(s)))
-
-
- def emojis(str=''):
- # Return platform-dependent emoji-safe version of string
- return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
-
-
- def file_age(path=__file__):
- # Return days since last file update
- dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta
- return dt.days # + dt.seconds / 86400 # fractional days
-
-
- def file_date(path=__file__):
- # Return human-readable file modification date, i.e. '2021-3-26'
- t = datetime.fromtimestamp(Path(path).stat().st_mtime)
- return f'{t.year}-{t.month}-{t.day}'
-
-
- def file_size(path):
- # Return file/dir size (MB)
- mb = 1 << 20 # bytes to MiB (1024 ** 2)
- path = Path(path)
- if path.is_file():
- return path.stat().st_size / mb
- elif path.is_dir():
- return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
- else:
- return 0.0
-
-
- def check_online():
- # Check internet connectivity
- import socket
- try:
- socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
- return True
- except OSError:
- return False
-
-
- def git_describe(path=ROOT): # path must be a directory
- # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
- try:
- assert (Path(path) / '.git').is_dir()
- return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
- except Exception:
- return ''
-
-
- @try_except
- @WorkingDirectory(ROOT)
- def check_git_status():
- # Recommend 'git pull' if code is out of date
- msg = ', for updates see https://github.com/ultralytics/yolov5'
- s = colorstr('github: ') # string
- assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
- assert not is_docker(), s + 'skipping check (Docker image)' + msg
- assert check_online(), s + 'skipping check (offline)' + msg
-
- cmd = 'git fetch && git config --get remote.origin.url'
- url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch
- branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
- n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
- if n > 0:
- s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update."
- else:
- s += f'up to date with {url} ✅'
- LOGGER.info(emojis(s)) # emoji-safe
-
-
- def check_python(minimum='3.7.0'):
- # Check current python version vs. required python version
- check_version(platform.python_version(), minimum, name='Python ', hard=True)
-
-
- def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
- # Check version vs. required version
- current, minimum = (pkg.parse_version(x) for x in (current, minimum))
- result = (current == minimum) if pinned else (current >= minimum) # bool
- s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed' # string
- if hard:
- assert result, s # assert min requirements met
- if verbose and not result:
- LOGGER.warning(s)
- return result
-
-
- @try_except
- def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=()):
- # Check installed dependencies meet requirements (pass *.txt file or list of packages)
- prefix = colorstr('red', 'bold', 'requirements:')
- check_python() # check python version
- if isinstance(requirements, (str, Path)): # requirements.txt file
- file = Path(requirements)
- assert file.exists(), f"{prefix} {file.resolve()} not found, check failed."
- with file.open() as f:
- requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
- else: # list or tuple of packages
- requirements = [x for x in requirements if x not in exclude]
-
- n = 0 # number of packages updates
- for i, r in enumerate(requirements):
- try:
- pkg.require(r)
- except Exception: # DistributionNotFound or VersionConflict if requirements not met
- s = f"{prefix} {r} not found and is required by YOLOv5"
- if install and AUTOINSTALL: # check environment variable
- LOGGER.info(f"{s}, attempting auto-update...")
- try:
- assert check_online(), f"'pip install {r}' skipped (offline)"
- LOGGER.info(check_output(f"pip install '{r}' {cmds[i] if cmds else ''}", shell=True).decode())
- n += 1
- except Exception as e:
- LOGGER.warning(f'{prefix} {e}')
- else:
- LOGGER.info(f'{s}. Please install and rerun your command.')
-
- if n: # if packages updated
- source = file.resolve() if 'file' in locals() else requirements
- s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
- f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
- LOGGER.info(emojis(s))
-
-
- def check_img_size(imgsz, s=32, floor=0):
- # Verify image size is a multiple of stride s in each dimension
- if isinstance(imgsz, int): # integer i.e. img_size=640
- new_size = max(make_divisible(imgsz, int(s)), floor)
- else: # list i.e. img_size=[640, 480]
- imgsz = list(imgsz) # convert to list if tuple
- new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
- if new_size != imgsz:
- LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
- return new_size
-
-
- def check_imshow():
- # Check if environment supports image displays
- try:
- assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
- assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
- cv2.imshow('test', np.zeros((1, 1, 3)))
- cv2.waitKey(1)
- cv2.destroyAllWindows()
- cv2.waitKey(1)
- return True
- except Exception as e:
- LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
- return False
-
-
- def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
- # Check file(s) for acceptable suffix
- if file and suffix:
- if isinstance(suffix, str):
- suffix = [suffix]
- for f in file if isinstance(file, (list, tuple)) else [file]:
- s = Path(f).suffix.lower() # file suffix
- if len(s):
- assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
-
-
- def check_yaml(file, suffix=('.yaml', '.yml')):
- # Search/download YAML file (if necessary) and return path, checking suffix
- return check_file(file, suffix)
-
-
- def check_file(file, suffix=''):
- # Search/download file (if necessary) and return path
- check_suffix(file, suffix) # optional
- file = str(file) # convert to str()
- if Path(file).is_file() or not file: # exists
- return file
- elif file.startswith(('http:/', 'https:/')): # download
- url = file # warning: Pathlib turns :// -> :/
- file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
- if Path(file).is_file():
- LOGGER.info(f'Found {url} locally at {file}') # file already exists
- else:
- LOGGER.info(f'Downloading {url} to {file}...')
- torch.hub.download_url_to_file(url, file)
- assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
- return file
- else: # search
- files = []
- for d in 'data', 'models', 'utils': # search directories
- files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
- assert len(files), f'File not found: {file}' # assert file was found
- assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
- return files[0] # return file
-
-
- def check_font(font=FONT, progress=False):
- # Download font to CONFIG_DIR if necessary
- font = Path(font)
- file = CONFIG_DIR / font.name
- if not font.exists() and not file.exists():
- url = "https://ultralytics.com/assets/" + font.name
- LOGGER.info(f'Downloading {url} to {file}...')
- torch.hub.download_url_to_file(url, str(file), progress=progress)
-
-
- def check_dataset(data, autodownload=True):
- # Download and/or unzip dataset if not found locally
- # Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip
-
- # Download (optional)
- extract_dir = ''
- if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip
- download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1)
- data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
- extract_dir, autodownload = data.parent, False
-
- # Read yaml (optional)
- if isinstance(data, (str, Path)):
- with open(data, errors='ignore') as f:
- data = yaml.safe_load(f) # dictionary
-
- # Resolve paths
- path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
- if not path.is_absolute():
- path = (ROOT / path).resolve()
- for k in 'train', 'val', 'test':
- if data.get(k): # prepend path
- data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
-
- # Parse yaml
- assert 'nc' in data, "Dataset 'nc' key missing."
- if 'names' not in data:
- data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing
- train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
- if val:
- val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
- if not all(x.exists() for x in val):
- LOGGER.info(emojis('\nDataset not found ⚠, missing paths %s' % [str(x) for x in val if not x.exists()]))
- if not s or not autodownload:
- raise Exception(emojis('Dataset not found ❌'))
- t = time.time()
- root = path.parent if 'path' in data else '..' # unzip directory i.e. '../'
- if s.startswith('http') and s.endswith('.zip'): # URL
- f = Path(s).name # filename
- LOGGER.info(f'Downloading {s} to {f}...')
- torch.hub.download_url_to_file(s, f)
- Path(root).mkdir(parents=True, exist_ok=True) # create root
- ZipFile(f).extractall(path=root) # unzip
- Path(f).unlink() # remove zip
- r = None # success
- elif s.startswith('bash '): # bash script
- LOGGER.info(f'Running {s} ...')
- r = os.system(s)
- else: # python script
- r = exec(s, {'yaml': data}) # return None
- dt = f'({round(time.time() - t, 1)}s)'
- s = f"success ✅ {dt}, saved to {colorstr('bold', root)}" if r in (0, None) else f"failure {dt} ❌"
- LOGGER.info(emojis(f"Dataset download {s}"))
- check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
- return data # dictionary
-
-
- def check_amp(model):
- # Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
- from models.common import AutoShape, DetectMultiBackend
-
- def amp_allclose(model, im):
- # All close FP32 vs AMP results
- m = AutoShape(model, verbose=False) # model
- a = m(im).xywhn[0] # FP32 inference
- m.amp = True
- b = m(im).xywhn[0] # AMP inference
- return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance
-
- prefix = colorstr('AMP: ')
- device = next(model.parameters()).device # get model device
- if device.type == 'cpu':
- return False # AMP disabled on CPU
- f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check
- im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
- try:
- assert amp_allclose(model, im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im)
- LOGGER.info(emojis(f'{prefix}checks passed ✅'))
- return True
- except Exception:
- help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
- LOGGER.warning(emojis(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}'))
- return False
-
-
- def url2file(url):
- # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
- url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
- return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
-
-
- def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
- # Multi-threaded file download and unzip function, used in data.yaml for autodownload
- def download_one(url, dir):
- # Download 1 file
- success = True
- f = dir / Path(url).name # filename
- if Path(url).is_file(): # exists in current path
- Path(url).rename(f) # move to dir
- elif not f.exists():
- LOGGER.info(f'Downloading {url} to {f}...')
- for i in range(retry + 1):
- if curl:
- s = 'sS' if threads > 1 else '' # silent
- r = os.system(f"curl -{s}L '{url}' -o '{f}' --retry 9 -C -") # curl download
- success = r == 0
- else:
- torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
- success = f.is_file()
- if success:
- break
- elif i < retry:
- LOGGER.warning(f'Download failure, retrying {i + 1}/{retry} {url}...')
- else:
- LOGGER.warning(f'Failed to download {url}...')
-
- if unzip and success and f.suffix in ('.zip', '.gz'):
- LOGGER.info(f'Unzipping {f}...')
- if f.suffix == '.zip':
- ZipFile(f).extractall(path=dir) # unzip
- elif f.suffix == '.gz':
- os.system(f'tar xfz {f} --directory {f.parent}') # unzip
- if delete:
- f.unlink() # remove zip
-
- dir = Path(dir)
- dir.mkdir(parents=True, exist_ok=True) # make directory
- if threads > 1:
- pool = ThreadPool(threads)
- pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded
- pool.close()
- pool.join()
- else:
- for u in [url] if isinstance(url, (str, Path)) else url:
- download_one(u, dir)
-
-
- def make_divisible(x, divisor):
- # Returns nearest x divisible by divisor
- if isinstance(divisor, torch.Tensor):
- divisor = int(divisor.max()) # to int
- return math.ceil(x / divisor) * divisor
-
-
- def clean_str(s):
- # Cleans a string by replacing special characters with underscore _
- return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
-
-
- def one_cycle(y1=0.0, y2=1.0, steps=100):
- # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
- return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
-
-
- def colorstr(*input):
- # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
- *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
- colors = {
- 'black': '\033[30m', # basic colors
- 'red': '\033[31m',
- 'green': '\033[32m',
- 'yellow': '\033[33m',
- 'blue': '\033[34m',
- 'magenta': '\033[35m',
- 'cyan': '\033[36m',
- 'white': '\033[37m',
- 'bright_black': '\033[90m', # bright colors
- 'bright_red': '\033[91m',
- 'bright_green': '\033[92m',
- 'bright_yellow': '\033[93m',
- 'bright_blue': '\033[94m',
- 'bright_magenta': '\033[95m',
- 'bright_cyan': '\033[96m',
- 'bright_white': '\033[97m',
- 'end': '\033[0m', # misc
- 'bold': '\033[1m',
- 'underline': '\033[4m'}
- return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
-
-
- def labels_to_class_weights(labels, nc=80):
- # Get class weights (inverse frequency) from training labels
- if labels[0] is None: # no labels loaded
- return torch.Tensor()
-
- labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
- classes = labels[:, 0].astype(np.int) # labels = [class xywh]
- weights = np.bincount(classes, minlength=nc) # occurrences per class
-
- # Prepend gridpoint count (for uCE training)
- # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
- # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
-
- weights[weights == 0] = 1 # replace empty bins with 1
- weights = 1 / weights # number of targets per class
- weights /= weights.sum() # normalize
- return torch.from_numpy(weights)
-
-
- def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
- # Produces image weights based on class_weights and image contents
- # Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample
- class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
- return (class_weights.reshape(1, nc) * class_counts).sum(1)
-
-
- def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
- # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
- # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
- # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
- # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
- # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
- return [
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
- 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
- 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
-
-
- def xyxy2xywh(x):
- # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
- y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
- y[:, 2] = x[:, 2] - x[:, 0] # width
- y[:, 3] = x[:, 3] - x[:, 1] # height
- return y
-
-
- def xywh2xyxy(x):
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
- return y
-
-
- def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
- # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
- y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
- y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
- y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
- return y
-
-
- def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
- # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
- if clip:
- clip_coords(x, (h - eps, w - eps)) # warning: inplace clip
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
- y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
- y[:, 2] = (x[:, 2] - x[:, 0]) / w # width
- y[:, 3] = (x[:, 3] - x[:, 1]) / h # height
- return y
-
-
- def xyn2xy(x, w=640, h=640, padw=0, padh=0):
- # Convert normalized segments into pixel segments, shape (n,2)
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = w * x[:, 0] + padw # top left x
- y[:, 1] = h * x[:, 1] + padh # top left y
- return y
-
-
- def segment2box(segment, width=640, height=640):
- # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
- x, y = segment.T # segment xy
- inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
- x, y, = x[inside], y[inside]
- return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
-
-
- def segments2boxes(segments):
- # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
- boxes = []
- for s in segments:
- x, y = s.T # segment xy
- boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
- return xyxy2xywh(np.array(boxes)) # cls, xywh
-
-
- def resample_segments(segments, n=1000):
- # Up-sample an (n,2) segment
- for i, s in enumerate(segments):
- x = np.linspace(0, len(s) - 1, n)
- xp = np.arange(len(s))
- segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
- return segments
-
-
- def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
- # Rescale coords (xyxy) from img1_shape to img0_shape
- if ratio_pad is None: # calculate from img0_shape
- gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
- pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
- else:
- gain = ratio_pad[0][0]
- pad = ratio_pad[1]
-
- coords[:, [0, 2]] -= pad[0] # x padding
- coords[:, [1, 3]] -= pad[1] # y padding
- coords[:, :4] /= gain
- clip_coords(coords, img0_shape)
- return coords
-
-
- def clip_coords(boxes, shape):
- # Clip bounding xyxy bounding boxes to image shape (height, width)
- if isinstance(boxes, torch.Tensor): # faster individually
- boxes[:, 0].clamp_(0, shape[1]) # x1
- boxes[:, 1].clamp_(0, shape[0]) # y1
- boxes[:, 2].clamp_(0, shape[1]) # x2
- boxes[:, 3].clamp_(0, shape[0]) # y2
- else: # np.array (faster grouped)
- boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
- boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
-
-
- def non_max_suppression(prediction,
- conf_thres=0.25,
- iou_thres=0.45,
- classes=None,
- agnostic=False,
- multi_label=False,
- labels=(),
- max_det=300):
- """Non-Maximum Suppression (NMS) on inference results to reject overlapping bounding boxes
-
- Returns:
- list of detections, on (n,6) tensor per image [xyxy, conf, cls]
- """
-
- bs = prediction.shape[0] # batch size
- nc = prediction.shape[2] - 5 # number of classes
- xc = prediction[..., 4] > conf_thres # candidates
-
- # Checks
- assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
- assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
-
- # Settings
- # min_wh = 2 # (pixels) minimum box width and height
- max_wh = 7680 # (pixels) maximum box width and height
- max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
- time_limit = 0.3 + 0.03 * bs # seconds to quit after
- redundant = True # require redundant detections
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
- merge = False # use merge-NMS
-
- t = time.time()
- output = [torch.zeros((0, 6), device=prediction.device)] * bs
- for xi, x in enumerate(prediction): # image index, image inference
- # Apply constraints
- # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
- x = x[xc[xi]] # confidence
-
- # Cat apriori labels if autolabelling
- if labels and len(labels[xi]):
- lb = labels[xi]
- v = torch.zeros((len(lb), nc + 5), device=x.device)
- v[:, :4] = lb[:, 1:5] # box
- v[:, 4] = 1.0 # conf
- v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
- x = torch.cat((x, v), 0)
-
- # If none remain process next image
- if not x.shape[0]:
- continue
-
- # Compute conf
- x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
-
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
- box = xywh2xyxy(x[:, :4])
-
- # Detections matrix nx6 (xyxy, conf, cls)
- if multi_label:
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
- else: # best class only
- conf, j = x[:, 5:].max(1, keepdim=True)
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
-
- # Filter by class
- if classes is not None:
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
-
- # Apply finite constraint
- # if not torch.isfinite(x).all():
- # x = x[torch.isfinite(x).all(1)]
-
- # Check shape
- n = x.shape[0] # number of boxes
- if not n: # no boxes
- continue
- elif n > max_nms: # excess boxes
- x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
-
- # Batched NMS
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
- if i.shape[0] > max_det: # limit detections
- i = i[:max_det]
- if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
- # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
- weights = iou * scores[None] # box weights
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
- if redundant:
- i = i[iou.sum(1) > 1] # require redundancy
-
- output[xi] = x[i]
- if (time.time() - t) > time_limit:
- LOGGER.warning(f'WARNING: NMS time limit {time_limit:.3f}s exceeded')
- break # time limit exceeded
-
- return output
-
-
- def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
- # Strip optimizer from 'f' to finalize training, optionally save as 's'
- x = torch.load(f, map_location=torch.device('cpu'))
- if x.get('ema'):
- x['model'] = x['ema'] # replace model with ema
- for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates': # keys
- x[k] = None
- x['epoch'] = -1
- x['model'].half() # to FP16
- for p in x['model'].parameters():
- p.requires_grad = False
- torch.save(x, s or f)
- mb = os.path.getsize(s or f) / 1E6 # filesize
- LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
-
-
- def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
- evolve_csv = save_dir / 'evolve.csv'
- evolve_yaml = save_dir / 'hyp_evolve.yaml'
- keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
- 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps]
- keys = tuple(x.strip() for x in keys)
- vals = results + tuple(hyp.values())
- n = len(keys)
-
- # Download (optional)
- if bucket:
- url = f'gs://{bucket}/evolve.csv'
- if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
- os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
-
- # Log to evolve.csv
- s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
- with open(evolve_csv, 'a') as f:
- f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
-
- # Save yaml
- with open(evolve_yaml, 'w') as f:
- data = pd.read_csv(evolve_csv)
- data = data.rename(columns=lambda x: x.strip()) # strip keys
- i = np.argmax(fitness(data.values[:, :4])) #
- generations = len(data)
- f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
- f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
- '\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
- yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
-
- # Print to screen
- LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
- ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
- for x in vals) + '\n\n')
-
- if bucket:
- os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
-
-
- def apply_classifier(x, model, img, im0):
- # Apply a second stage classifier to YOLO outputs
- # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
- im0 = [im0] if isinstance(im0, np.ndarray) else im0
- for i, d in enumerate(x): # per image
- if d is not None and len(d):
- d = d.clone()
-
- # Reshape and pad cutouts
- b = xyxy2xywh(d[:, :4]) # boxes
- b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
- b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
- d[:, :4] = xywh2xyxy(b).long()
-
- # Rescale boxes from img_size to im0 size
- scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
-
- # Classes
- pred_cls1 = d[:, 5].long()
- ims = []
- for a in d:
- cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
- im = cv2.resize(cutout, (224, 224)) # BGR
-
- im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
- im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
- im /= 255 # 0 - 255 to 0.0 - 1.0
- ims.append(im)
-
- pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
- x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
-
- return x
-
-
- def increment_path(path, exist_ok=False, sep='', mkdir=False):
- # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
- path = Path(path) # os-agnostic
- if path.exists() and not exist_ok:
- path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
-
- # Method 1
- for n in range(2, 9999):
- p = f'{path}{sep}{n}{suffix}' # increment path
- if not os.path.exists(p): #
- break
- path = Path(p)
-
- # Method 2 (deprecated)
- # dirs = glob.glob(f"{path}{sep}*") # similar paths
- # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
- # i = [int(m.groups()[0]) for m in matches if m] # indices
- # n = max(i) + 1 if i else 2 # increment number
- # path = Path(f"{path}{sep}{n}{suffix}") # increment path
-
- if mkdir:
- path.mkdir(parents=True, exist_ok=True) # make directory
-
- return path
-
-
- # OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------
- imshow_ = cv2.imshow # copy to avoid recursion errors
-
-
- def imread(path, flags=cv2.IMREAD_COLOR):
- return cv2.imdecode(np.fromfile(path, np.uint8), flags)
-
-
- def imwrite(path, im):
- try:
- cv2.imencode(Path(path).suffix, im)[1].tofile(path)
- return True
- except Exception:
- return False
-
-
- def imshow(path, im):
- imshow_(path.encode('unicode_escape').decode(), im)
-
-
- cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine
-
- # Variables ------------------------------------------------------------------------------------------------------------
- NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size for tqdm
|