選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

587 行
30KB

  1. """Train a YOLOv5 model on a custom dataset
  2. Usage:
  3. $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
  4. """
  5. import argparse
  6. import logging
  7. import os
  8. import random
  9. import sys
  10. import time
  11. from copy import deepcopy
  12. from pathlib import Path
  13. import math
  14. import numpy as np
  15. import torch
  16. import torch.distributed as dist
  17. import torch.nn as nn
  18. import yaml
  19. from torch.cuda import amp
  20. from torch.nn.parallel import DistributedDataParallel as DDP
  21. from torch.optim import Adam, SGD, lr_scheduler
  22. from tqdm import tqdm
  23. FILE = Path(__file__).absolute()
  24. sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
  25. import val # for end-of-epoch mAP
  26. from models.experimental import attempt_load
  27. from models.yolo import Model
  28. from utils.autoanchor import check_anchors
  29. from utils.datasets import create_dataloader
  30. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  31. strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  32. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  33. from utils.downloads import attempt_download
  34. from utils.loss import ComputeLoss
  35. from utils.plots import plot_labels, plot_evolution
  36. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
  37. from utils.loggers.wandb.wandb_utils import check_wandb_resume
  38. from utils.metrics import fitness
  39. from utils.loggers import Loggers
  40. LOGGER = logging.getLogger(__name__)
  41. LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
  42. RANK = int(os.getenv('RANK', -1))
  43. WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
  44. def train(hyp, # path/to/hyp.yaml or hyp dictionary
  45. opt,
  46. device,
  47. ):
  48. save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = \
  49. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
  50. opt.resume, opt.noval, opt.nosave, opt.workers
  51. # Directories
  52. w = save_dir / 'weights' # weights dir
  53. w.mkdir(parents=True, exist_ok=True) # make dir
  54. last, best = w / 'last.pt', w / 'best.pt'
  55. # Hyperparameters
  56. if isinstance(hyp, str):
  57. with open(hyp) as f:
  58. hyp = yaml.safe_load(f) # load hyps dict
  59. LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  60. # Save run settings
  61. with open(save_dir / 'hyp.yaml', 'w') as f:
  62. yaml.safe_dump(hyp, f, sort_keys=False)
  63. with open(save_dir / 'opt.yaml', 'w') as f:
  64. yaml.safe_dump(vars(opt), f, sort_keys=False)
  65. data_dict = None
  66. # Loggers
  67. if RANK in [-1, 0]:
  68. loggers = Loggers(save_dir, weights, opt, hyp, LOGGER).start() # loggers dict
  69. if loggers.wandb:
  70. data_dict = loggers.wandb.data_dict
  71. if resume:
  72. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
  73. # Config
  74. plots = not evolve # create plots
  75. cuda = device.type != 'cpu'
  76. init_seeds(1 + RANK)
  77. with torch_distributed_zero_first(RANK):
  78. data_dict = data_dict or check_dataset(data) # check if None
  79. train_path, val_path = data_dict['train'], data_dict['val']
  80. nc = 1 if single_cls else int(data_dict['nc']) # number of classes
  81. names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  82. assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
  83. is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
  84. # Model
  85. pretrained = weights.endswith('.pt')
  86. if pretrained:
  87. with torch_distributed_zero_first(RANK):
  88. weights = attempt_download(weights) # download if not found locally
  89. ckpt = torch.load(weights, map_location=device) # load checkpoint
  90. model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  91. exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
  92. csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
  93. csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
  94. model.load_state_dict(csd, strict=False) # load
  95. LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
  96. else:
  97. model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  98. # Freeze
  99. freeze = [] # parameter names to freeze (full or partial)
  100. for k, v in model.named_parameters():
  101. v.requires_grad = True # train all layers
  102. if any(x in k for x in freeze):
  103. print(f'freezing {k}')
  104. v.requires_grad = False
  105. # Optimizer
  106. nbs = 64 # nominal batch size
  107. accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
  108. hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
  109. LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  110. g0, g1, g2 = [], [], [] # optimizer parameter groups
  111. for v in model.modules():
  112. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
  113. g2.append(v.bias)
  114. if isinstance(v, nn.BatchNorm2d): # weight (no decay)
  115. g0.append(v.weight)
  116. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
  117. g1.append(v.weight)
  118. if opt.adam:
  119. optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  120. else:
  121. optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  122. optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
  123. optimizer.add_param_group({'params': g2}) # add g2 (biases)
  124. LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
  125. f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
  126. del g0, g1, g2
  127. # Scheduler
  128. if opt.linear_lr:
  129. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  130. else:
  131. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  132. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
  133. # EMA
  134. ema = ModelEMA(model) if RANK in [-1, 0] else None
  135. # Resume
  136. start_epoch, best_fitness = 0, 0.0
  137. if pretrained:
  138. # Optimizer
  139. if ckpt['optimizer'] is not None:
  140. optimizer.load_state_dict(ckpt['optimizer'])
  141. best_fitness = ckpt['best_fitness']
  142. # EMA
  143. if ema and ckpt.get('ema'):
  144. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  145. ema.updates = ckpt['updates']
  146. # Epochs
  147. start_epoch = ckpt['epoch'] + 1
  148. if resume:
  149. assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
  150. if epochs < start_epoch:
  151. LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
  152. epochs += ckpt['epoch'] # finetune additional epochs
  153. del ckpt, csd
  154. # Image sizes
  155. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  156. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  157. imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
  158. # DP mode
  159. if cuda and RANK == -1 and torch.cuda.device_count() > 1:
  160. logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
  161. 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
  162. model = torch.nn.DataParallel(model)
  163. # SyncBatchNorm
  164. if opt.sync_bn and cuda and RANK != -1:
  165. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  166. LOGGER.info('Using SyncBatchNorm()')
  167. # Trainloader
  168. train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
  169. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK,
  170. workers=workers, image_weights=opt.image_weights, quad=opt.quad,
  171. prefix=colorstr('train: '))
  172. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  173. nb = len(train_loader) # number of batches
  174. assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
  175. # Process 0
  176. if RANK in [-1, 0]:
  177. val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
  178. hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1,
  179. workers=workers, pad=0.5,
  180. prefix=colorstr('val: '))[0]
  181. if not resume:
  182. labels = np.concatenate(dataset.labels, 0)
  183. # c = torch.tensor(labels[:, 0]) # classes
  184. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  185. # model._initialize_biases(cf.to(device))
  186. if plots:
  187. plot_labels(labels, names, save_dir, loggers)
  188. # Anchors
  189. if not opt.noautoanchor:
  190. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  191. model.half().float() # pre-reduce anchor precision
  192. # DDP mode
  193. if cuda and RANK != -1:
  194. model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
  195. # Model parameters
  196. hyp['box'] *= 3. / nl # scale to layers
  197. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  198. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  199. hyp['label_smoothing'] = opt.label_smoothing
  200. model.nc = nc # attach number of classes to model
  201. model.hyp = hyp # attach hyperparameters to model
  202. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  203. model.names = names
  204. # Start training
  205. t0 = time.time()
  206. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  207. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  208. last_opt_step = -1
  209. maps = np.zeros(nc) # mAP per class
  210. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  211. scheduler.last_epoch = start_epoch - 1 # do not move
  212. scaler = amp.GradScaler(enabled=cuda)
  213. compute_loss = ComputeLoss(model) # init loss class
  214. LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
  215. f'Using {train_loader.num_workers} dataloader workers\n'
  216. f'Logging results to {save_dir}\n'
  217. f'Starting training for {epochs} epochs...')
  218. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  219. model.train()
  220. # Update image weights (optional)
  221. if opt.image_weights:
  222. # Generate indices
  223. if RANK in [-1, 0]:
  224. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  225. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  226. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  227. # Broadcast if DDP
  228. if RANK != -1:
  229. indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()
  230. dist.broadcast(indices, 0)
  231. if RANK != 0:
  232. dataset.indices = indices.cpu().numpy()
  233. # Update mosaic border
  234. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  235. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  236. mloss = torch.zeros(3, device=device) # mean losses
  237. if RANK != -1:
  238. train_loader.sampler.set_epoch(epoch)
  239. pbar = enumerate(train_loader)
  240. LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
  241. if RANK in [-1, 0]:
  242. pbar = tqdm(pbar, total=nb) # progress bar
  243. optimizer.zero_grad()
  244. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  245. ni = i + nb * epoch # number integrated batches (since train start)
  246. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  247. # Warmup
  248. if ni <= nw:
  249. xi = [0, nw] # x interp
  250. # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  251. accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
  252. for j, x in enumerate(optimizer.param_groups):
  253. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  254. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  255. if 'momentum' in x:
  256. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  257. # Multi-scale
  258. if opt.multi_scale:
  259. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  260. sf = sz / max(imgs.shape[2:]) # scale factor
  261. if sf != 1:
  262. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  263. imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  264. # Forward
  265. with amp.autocast(enabled=cuda):
  266. pred = model(imgs) # forward
  267. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  268. if RANK != -1:
  269. loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
  270. if opt.quad:
  271. loss *= 4.
  272. # Backward
  273. scaler.scale(loss).backward()
  274. # Optimize
  275. if ni - last_opt_step >= accumulate:
  276. scaler.step(optimizer) # optimizer.step
  277. scaler.update()
  278. optimizer.zero_grad()
  279. if ema:
  280. ema.update(model)
  281. last_opt_step = ni
  282. # Log
  283. if RANK in [-1, 0]:
  284. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  285. mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
  286. pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
  287. f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
  288. loggers.on_train_batch_end(ni, model, imgs, targets, paths, plots)
  289. # end batch ------------------------------------------------------------------------------------------------
  290. # Scheduler
  291. lr = [x['lr'] for x in optimizer.param_groups] # for loggers
  292. scheduler.step()
  293. if RANK in [-1, 0]:
  294. # mAP
  295. loggers.on_train_epoch_end(epoch)
  296. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
  297. final_epoch = epoch + 1 == epochs
  298. if not noval or final_epoch: # Calculate mAP
  299. results, maps, _ = val.run(data_dict,
  300. batch_size=batch_size // WORLD_SIZE * 2,
  301. imgsz=imgsz,
  302. model=ema.ema,
  303. single_cls=single_cls,
  304. dataloader=val_loader,
  305. save_dir=save_dir,
  306. save_json=is_coco and final_epoch,
  307. verbose=nc < 50 and final_epoch,
  308. plots=plots and final_epoch,
  309. loggers=loggers,
  310. compute_loss=compute_loss)
  311. # Update best mAP
  312. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  313. if fi > best_fitness:
  314. best_fitness = fi
  315. loggers.on_train_val_end(mloss, results, lr, epoch, best_fitness, fi)
  316. # Save model
  317. if (not nosave) or (final_epoch and not evolve): # if save
  318. ckpt = {'epoch': epoch,
  319. 'best_fitness': best_fitness,
  320. 'model': deepcopy(de_parallel(model)).half(),
  321. 'ema': deepcopy(ema.ema).half(),
  322. 'updates': ema.updates,
  323. 'optimizer': optimizer.state_dict(),
  324. 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None}
  325. # Save last, best and delete
  326. torch.save(ckpt, last)
  327. if best_fitness == fi:
  328. torch.save(ckpt, best)
  329. del ckpt
  330. loggers.on_model_save(last, epoch, final_epoch, best_fitness, fi)
  331. # end epoch ----------------------------------------------------------------------------------------------------
  332. # end training -----------------------------------------------------------------------------------------------------
  333. if RANK in [-1, 0]:
  334. LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
  335. if not evolve:
  336. if is_coco: # COCO dataset
  337. for m in [last, best] if best.exists() else [last]: # speed, mAP tests
  338. results, _, _ = val.run(data_dict,
  339. batch_size=batch_size // WORLD_SIZE * 2,
  340. imgsz=imgsz,
  341. model=attempt_load(m, device).half(),
  342. iou_thres=0.7, # NMS IoU threshold for best pycocotools results
  343. single_cls=single_cls,
  344. dataloader=val_loader,
  345. save_dir=save_dir,
  346. save_json=True,
  347. plots=False)
  348. # Strip optimizers
  349. for f in last, best:
  350. if f.exists():
  351. strip_optimizer(f) # strip optimizers
  352. loggers.on_train_end(last, best, plots)
  353. torch.cuda.empty_cache()
  354. return results
  355. def parse_opt(known=False):
  356. parser = argparse.ArgumentParser()
  357. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  358. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  359. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  360. parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
  361. parser.add_argument('--epochs', type=int, default=300)
  362. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  363. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
  364. parser.add_argument('--rect', action='store_true', help='rectangular training')
  365. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  366. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  367. parser.add_argument('--noval', action='store_true', help='only validate final epoch')
  368. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  369. parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
  370. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  371. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  372. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  373. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  374. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  375. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  376. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  377. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  378. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  379. parser.add_argument('--project', default='runs/train', help='save to project/name')
  380. parser.add_argument('--entity', default=None, help='W&B entity')
  381. parser.add_argument('--name', default='exp', help='save to project/name')
  382. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  383. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  384. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  385. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  386. parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
  387. parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
  388. parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
  389. parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
  390. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  391. opt = parser.parse_known_args()[0] if known else parser.parse_args()
  392. return opt
  393. def main(opt):
  394. set_logging(RANK)
  395. if RANK in [-1, 0]:
  396. print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  397. check_git_status()
  398. check_requirements(requirements=FILE.parent / 'requirements.txt', exclude=['thop'])
  399. # Resume
  400. if opt.resume and not check_wandb_resume(opt): # resume an interrupted run
  401. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  402. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  403. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  404. opt = argparse.Namespace(**yaml.safe_load(f)) # replace
  405. opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
  406. LOGGER.info(f'Resuming training from {ckpt}')
  407. else:
  408. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  409. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  410. opt.name = 'evolve' if opt.evolve else opt.name
  411. opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
  412. # DDP mode
  413. device = select_device(opt.device, batch_size=opt.batch_size)
  414. if LOCAL_RANK != -1:
  415. from datetime import timedelta
  416. assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
  417. assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
  418. assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
  419. assert not opt.evolve, '--evolve argument is not compatible with DDP training'
  420. assert not opt.sync_bn, '--sync-bn known training issue, see https://github.com/ultralytics/yolov5/issues/3998'
  421. torch.cuda.set_device(LOCAL_RANK)
  422. device = torch.device('cuda', LOCAL_RANK)
  423. dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60))
  424. # Train
  425. if not opt.evolve:
  426. train(opt.hyp, opt, device)
  427. if WORLD_SIZE > 1 and RANK == 0:
  428. _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]
  429. # Evolve hyperparameters (optional)
  430. else:
  431. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  432. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  433. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  434. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  435. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  436. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  437. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  438. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  439. 'box': (1, 0.02, 0.2), # box loss gain
  440. 'cls': (1, 0.2, 4.0), # cls loss gain
  441. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  442. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  443. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  444. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  445. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  446. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  447. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  448. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  449. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  450. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  451. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  452. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  453. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  454. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  455. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  456. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  457. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  458. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  459. 'mixup': (1, 0.0, 1.0), # image mixup (probability)
  460. 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
  461. with open(opt.hyp) as f:
  462. hyp = yaml.safe_load(f) # load hyps dict
  463. if 'anchors' not in hyp: # anchors commented in hyp.yaml
  464. hyp['anchors'] = 3
  465. opt.noval, opt.nosave = True, True # only val/save final epoch
  466. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  467. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  468. if opt.bucket:
  469. os.system(f'gsutil cp gs://{opt.bucket}/evolve.txt .') # download evolve.txt if exists
  470. for _ in range(opt.evolve): # generations to evolve
  471. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  472. # Select parent(s)
  473. parent = 'single' # parent selection method: 'single' or 'weighted'
  474. x = np.loadtxt('evolve.txt', ndmin=2)
  475. n = min(5, len(x)) # number of previous results to consider
  476. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  477. w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
  478. if parent == 'single' or len(x) == 1:
  479. # x = x[random.randint(0, n - 1)] # random selection
  480. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  481. elif parent == 'weighted':
  482. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  483. # Mutate
  484. mp, s = 0.8, 0.2 # mutation probability, sigma
  485. npr = np.random
  486. npr.seed(int(time.time()))
  487. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  488. ng = len(meta)
  489. v = np.ones(ng)
  490. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  491. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  492. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  493. hyp[k] = float(x[i + 7] * v[i]) # mutate
  494. # Constrain to limits
  495. for k, v in meta.items():
  496. hyp[k] = max(hyp[k], v[1]) # lower limit
  497. hyp[k] = min(hyp[k], v[2]) # upper limit
  498. hyp[k] = round(hyp[k], 5) # significant digits
  499. # Train mutation
  500. results = train(hyp.copy(), opt, device)
  501. # Write mutation results
  502. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  503. # Plot results
  504. plot_evolution(yaml_file)
  505. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  506. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
  507. def run(**kwargs):
  508. # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
  509. opt = parse_opt(True)
  510. for k, v in kwargs.items():
  511. setattr(opt, k, v)
  512. main(opt)
  513. if __name__ == "__main__":
  514. opt = parse_opt()
  515. main(opt)