Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.

327 lines
15KB

  1. import argparse
  2. import glob
  3. import json
  4. import os
  5. from pathlib import Path
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, box_iou, \
  13. non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path
  14. from utils.loss import compute_loss
  15. from utils.metrics import ap_per_class
  16. from utils.plots import plot_images, output_to_target
  17. from utils.torch_utils import select_device, time_synchronized
  18. def test(data,
  19. weights=None,
  20. batch_size=32,
  21. imgsz=640,
  22. conf_thres=0.001,
  23. iou_thres=0.6, # for NMS
  24. save_json=False,
  25. single_cls=False,
  26. augment=False,
  27. verbose=False,
  28. model=None,
  29. dataloader=None,
  30. save_dir=Path(''), # for saving images
  31. save_txt=False, # for auto-labelling
  32. save_conf=False,
  33. plots=True,
  34. log_imgs=0): # number of logged images
  35. # Initialize/load model and set device
  36. training = model is not None
  37. if training: # called by train.py
  38. device = next(model.parameters()).device # get model device
  39. else: # called directly
  40. set_logging()
  41. device = select_device(opt.device, batch_size=batch_size)
  42. save_txt = opt.save_txt # save *.txt labels
  43. # Directories
  44. save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
  45. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  46. # Load model
  47. model = attempt_load(weights, map_location=device) # load FP32 model
  48. imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
  49. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  50. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  51. # model = nn.DataParallel(model)
  52. # Half
  53. half = device.type != 'cpu' # half precision only supported on CUDA
  54. if half:
  55. model.half()
  56. # Configure
  57. model.eval()
  58. is_coco = data.endswith('coco.yaml') # is COCO dataset
  59. with open(data) as f:
  60. data = yaml.load(f, Loader=yaml.FullLoader) # model dict
  61. check_dataset(data) # check
  62. nc = 1 if single_cls else int(data['nc']) # number of classes
  63. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  64. niou = iouv.numel()
  65. # Logging
  66. log_imgs, wandb = min(log_imgs, 100), None # ceil
  67. try:
  68. import wandb # Weights & Biases
  69. except ImportError:
  70. log_imgs = 0
  71. # Dataloader
  72. if not training:
  73. img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
  74. _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
  75. path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
  76. dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0]
  77. seen = 0
  78. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  79. coco91class = coco80_to_coco91_class()
  80. s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  81. p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
  82. loss = torch.zeros(3, device=device)
  83. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  84. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  85. img = img.to(device, non_blocking=True)
  86. img = img.half() if half else img.float() # uint8 to fp16/32
  87. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  88. targets = targets.to(device)
  89. nb, _, height, width = img.shape # batch size, channels, height, width
  90. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device)
  91. with torch.no_grad():
  92. # Run model
  93. t = time_synchronized()
  94. inf_out, train_out = model(img, augment=augment) # inference and training outputs
  95. t0 += time_synchronized() - t
  96. # Compute loss
  97. if training:
  98. loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
  99. # Run NMS
  100. t = time_synchronized()
  101. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_txt else [] # for autolabelling
  102. output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb)
  103. t1 += time_synchronized() - t
  104. # Statistics per image
  105. for si, pred in enumerate(output):
  106. labels = targets[targets[:, 0] == si, 1:]
  107. nl = len(labels)
  108. tcls = labels[:, 0].tolist() if nl else [] # target class
  109. path = Path(paths[si])
  110. seen += 1
  111. if len(pred) == 0:
  112. if nl:
  113. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  114. continue
  115. # Predictions
  116. predn = pred.clone()
  117. scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
  118. # Append to text file
  119. if save_txt:
  120. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  121. for *xyxy, conf, cls in predn.tolist():
  122. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  123. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  124. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  125. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  126. # W&B logging
  127. if plots and len(wandb_images) < log_imgs:
  128. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  129. "class_id": int(cls),
  130. "box_caption": "%s %.3f" % (names[cls], conf),
  131. "scores": {"class_score": conf},
  132. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  133. boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
  134. wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))
  135. # Append to pycocotools JSON dictionary
  136. if save_json:
  137. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  138. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  139. box = xyxy2xywh(predn[:, :4]) # xywh
  140. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  141. for p, b in zip(pred.tolist(), box.tolist()):
  142. jdict.append({'image_id': image_id,
  143. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  144. 'bbox': [round(x, 3) for x in b],
  145. 'score': round(p[4], 5)})
  146. # Assign all predictions as incorrect
  147. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  148. if nl:
  149. detected = [] # target indices
  150. tcls_tensor = labels[:, 0]
  151. # target boxes
  152. tbox = xywh2xyxy(labels[:, 1:5])
  153. scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
  154. # Per target class
  155. for cls in torch.unique(tcls_tensor):
  156. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
  157. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
  158. # Search for detections
  159. if pi.shape[0]:
  160. # Prediction to target ious
  161. ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
  162. # Append detections
  163. detected_set = set()
  164. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  165. d = ti[i[j]] # detected target
  166. if d.item() not in detected_set:
  167. detected_set.add(d.item())
  168. detected.append(d)
  169. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  170. if len(detected) == nl: # all targets already located in image
  171. break
  172. # Append statistics (correct, conf, pcls, tcls)
  173. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  174. # Plot images
  175. if plots and batch_i < 3:
  176. f = save_dir / f'test_batch{batch_i}_labels.jpg' # filename
  177. plot_images(img, targets, paths, f, names) # labels
  178. f = save_dir / f'test_batch{batch_i}_pred.jpg'
  179. plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions
  180. # Compute statistics
  181. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  182. if len(stats) and stats[0].any():
  183. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  184. p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
  185. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  186. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  187. else:
  188. nt = torch.zeros(1)
  189. # W&B logging
  190. if plots and wandb and wandb.run:
  191. wandb.log({"Images": wandb_images})
  192. wandb.log({"Validation": [wandb.Image(str(x), caption=x.name) for x in sorted(save_dir.glob('test*.jpg'))]})
  193. # Print results
  194. pf = '%20s' + '%12.3g' * 6 # print format
  195. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  196. # Print results per class
  197. if verbose and nc > 1 and len(stats):
  198. for i, c in enumerate(ap_class):
  199. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  200. # Print speeds
  201. t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
  202. if not training:
  203. print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
  204. # Save JSON
  205. if save_json and len(jdict):
  206. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  207. anno_json = glob.glob('../coco/annotations/instances_val*.json')[0] # annotations json
  208. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  209. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  210. with open(pred_json, 'w') as f:
  211. json.dump(jdict, f)
  212. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  213. from pycocotools.coco import COCO
  214. from pycocotools.cocoeval import COCOeval
  215. anno = COCO(anno_json) # init annotations api
  216. pred = anno.loadRes(pred_json) # init predictions api
  217. eval = COCOeval(anno, pred, 'bbox')
  218. if is_coco:
  219. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  220. eval.evaluate()
  221. eval.accumulate()
  222. eval.summarize()
  223. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  224. except Exception as e:
  225. print('ERROR: pycocotools unable to run: %s' % e)
  226. # Return results
  227. if not training:
  228. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  229. print(f"Results saved to {save_dir}{s}")
  230. model.float() # for training
  231. maps = np.zeros(nc) + map
  232. for i, c in enumerate(ap_class):
  233. maps[c] = ap[i]
  234. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  235. if __name__ == '__main__':
  236. parser = argparse.ArgumentParser(prog='test.py')
  237. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  238. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
  239. parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
  240. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  241. parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
  242. parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
  243. parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
  244. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  245. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  246. parser.add_argument('--augment', action='store_true', help='augmented inference')
  247. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  248. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  249. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  250. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  251. parser.add_argument('--project', default='runs/test', help='save to project/name')
  252. parser.add_argument('--name', default='exp', help='save to project/name')
  253. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  254. opt = parser.parse_args()
  255. opt.save_json |= opt.data.endswith('coco.yaml')
  256. opt.data = check_file(opt.data) # check file
  257. print(opt)
  258. if opt.task in ['val', 'test']: # run normally
  259. test(opt.data,
  260. opt.weights,
  261. opt.batch_size,
  262. opt.img_size,
  263. opt.conf_thres,
  264. opt.iou_thres,
  265. opt.save_json,
  266. opt.single_cls,
  267. opt.augment,
  268. opt.verbose,
  269. save_txt=opt.save_txt,
  270. save_conf=opt.save_conf,
  271. )
  272. elif opt.task == 'study': # run over a range of settings and save/plot
  273. for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
  274. f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
  275. x = list(range(320, 800, 64)) # x axis
  276. y = [] # y axis
  277. for i in x: # img-size
  278. print('\nRunning %s point %s...' % (f, i))
  279. r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
  280. y.append(r + t) # results and times
  281. np.savetxt(f, y, fmt='%10.4g') # save
  282. os.system('zip -r study.zip study_*.txt')
  283. # utils.plots.plot_study_txt(f, x) # plot