|
- # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
- # Train command: python train.py --data visdrone.yaml
- # Default dataset location is next to YOLOv5:
- # /parent_folder
- # /VisDrone
- # /yolov5
-
-
- # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
- train: ../VisDrone/VisDrone2019-DET-train/images # 6471 images
- val: ../VisDrone/VisDrone2019-DET-val/images # 548 images
- test: ../VisDrone/VisDrone2019-DET-test-dev/images # 1610 images
-
- # number of classes
- nc: 10
-
- # class names
- names: [ 'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor' ]
-
-
- # download command/URL (optional) --------------------------------------------------------------------------------------
- download: |
- import os
- from pathlib import Path
-
- from utils.general import download
-
-
- def visdrone2yolo(dir):
- from PIL import Image
- from tqdm import tqdm
-
- def convert_box(size, box):
- # Convert VisDrone box to YOLO xywh box
- dw = 1. / size[0]
- dh = 1. / size[1]
- return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
-
- (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
- pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
- for f in pbar:
- img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
- lines = []
- with open(f, 'r') as file: # read annotation.txt
- for row in [x.split(',') for x in file.read().strip().splitlines()]:
- if row[4] == '0': # VisDrone 'ignored regions' class 0
- continue
- cls = int(row[5]) - 1
- box = convert_box(img_size, tuple(map(int, row[:4])))
- lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
- with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
- fl.writelines(lines) # write label.txt
-
-
- # Download
- dir = Path('../VisDrone') # dataset directory
- urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
- download(urls, dir=dir)
-
- # Convert
- for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
- visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
|