You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

681 lines
33KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Common modules
  4. """
  5. import json
  6. import math
  7. import platform
  8. import warnings
  9. from collections import OrderedDict, namedtuple
  10. from copy import copy
  11. from pathlib import Path
  12. import cv2
  13. import numpy as np
  14. import pandas as pd
  15. import requests
  16. import torch
  17. import torch.nn as nn
  18. import yaml
  19. from PIL import Image
  20. from torch.cuda import amp
  21. from utils.datasets import exif_transpose, letterbox
  22. from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
  23. make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
  24. from utils.plots import Annotator, colors, save_one_box
  25. from utils.torch_utils import copy_attr, time_sync
  26. def autopad(k, p=None): # kernel, padding
  27. # Pad to 'same'
  28. if p is None:
  29. p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
  30. return p
  31. class Conv(nn.Module):
  32. # Standard convolution
  33. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  34. super().__init__()
  35. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
  36. self.bn = nn.BatchNorm2d(c2)
  37. self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
  38. def forward(self, x):
  39. return self.act(self.bn(self.conv(x)))
  40. def forward_fuse(self, x):
  41. return self.act(self.conv(x))
  42. class DWConv(Conv):
  43. # Depth-wise convolution class
  44. def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  45. super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
  46. class TransformerLayer(nn.Module):
  47. # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
  48. def __init__(self, c, num_heads):
  49. super().__init__()
  50. self.q = nn.Linear(c, c, bias=False)
  51. self.k = nn.Linear(c, c, bias=False)
  52. self.v = nn.Linear(c, c, bias=False)
  53. self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
  54. self.fc1 = nn.Linear(c, c, bias=False)
  55. self.fc2 = nn.Linear(c, c, bias=False)
  56. def forward(self, x):
  57. x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
  58. x = self.fc2(self.fc1(x)) + x
  59. return x
  60. class TransformerBlock(nn.Module):
  61. # Vision Transformer https://arxiv.org/abs/2010.11929
  62. def __init__(self, c1, c2, num_heads, num_layers):
  63. super().__init__()
  64. self.conv = None
  65. if c1 != c2:
  66. self.conv = Conv(c1, c2)
  67. self.linear = nn.Linear(c2, c2) # learnable position embedding
  68. self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
  69. self.c2 = c2
  70. def forward(self, x):
  71. if self.conv is not None:
  72. x = self.conv(x)
  73. b, _, w, h = x.shape
  74. p = x.flatten(2).permute(2, 0, 1)
  75. return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
  76. class Bottleneck(nn.Module):
  77. # Standard bottleneck
  78. def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
  79. super().__init__()
  80. c_ = int(c2 * e) # hidden channels
  81. self.cv1 = Conv(c1, c_, 1, 1)
  82. self.cv2 = Conv(c_, c2, 3, 1, g=g)
  83. self.add = shortcut and c1 == c2
  84. def forward(self, x):
  85. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
  86. class BottleneckCSP(nn.Module):
  87. # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
  88. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
  89. super().__init__()
  90. c_ = int(c2 * e) # hidden channels
  91. self.cv1 = Conv(c1, c_, 1, 1)
  92. self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
  93. self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
  94. self.cv4 = Conv(2 * c_, c2, 1, 1)
  95. self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
  96. self.act = nn.SiLU()
  97. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
  98. def forward(self, x):
  99. y1 = self.cv3(self.m(self.cv1(x)))
  100. y2 = self.cv2(x)
  101. return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
  102. class C3(nn.Module):
  103. # CSP Bottleneck with 3 convolutions
  104. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
  105. super().__init__()
  106. c_ = int(c2 * e) # hidden channels
  107. self.cv1 = Conv(c1, c_, 1, 1)
  108. self.cv2 = Conv(c1, c_, 1, 1)
  109. self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
  110. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
  111. # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
  112. def forward(self, x):
  113. return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
  114. class C3TR(C3):
  115. # C3 module with TransformerBlock()
  116. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  117. super().__init__(c1, c2, n, shortcut, g, e)
  118. c_ = int(c2 * e)
  119. self.m = TransformerBlock(c_, c_, 4, n)
  120. class C3SPP(C3):
  121. # C3 module with SPP()
  122. def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
  123. super().__init__(c1, c2, n, shortcut, g, e)
  124. c_ = int(c2 * e)
  125. self.m = SPP(c_, c_, k)
  126. class C3Ghost(C3):
  127. # C3 module with GhostBottleneck()
  128. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  129. super().__init__(c1, c2, n, shortcut, g, e)
  130. c_ = int(c2 * e) # hidden channels
  131. self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
  132. class SPP(nn.Module):
  133. # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
  134. def __init__(self, c1, c2, k=(5, 9, 13)):
  135. super().__init__()
  136. c_ = c1 // 2 # hidden channels
  137. self.cv1 = Conv(c1, c_, 1, 1)
  138. self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
  139. self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
  140. def forward(self, x):
  141. x = self.cv1(x)
  142. with warnings.catch_warnings():
  143. warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
  144. return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
  145. class SPPF(nn.Module):
  146. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
  147. def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
  148. super().__init__()
  149. c_ = c1 // 2 # hidden channels
  150. self.cv1 = Conv(c1, c_, 1, 1)
  151. self.cv2 = Conv(c_ * 4, c2, 1, 1)
  152. self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
  153. def forward(self, x):
  154. x = self.cv1(x)
  155. with warnings.catch_warnings():
  156. warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
  157. y1 = self.m(x)
  158. y2 = self.m(y1)
  159. return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
  160. class Focus(nn.Module):
  161. # Focus wh information into c-space
  162. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  163. super().__init__()
  164. self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
  165. # self.contract = Contract(gain=2)
  166. def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
  167. return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
  168. # return self.conv(self.contract(x))
  169. class GhostConv(nn.Module):
  170. # Ghost Convolution https://github.com/huawei-noah/ghostnet
  171. def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
  172. super().__init__()
  173. c_ = c2 // 2 # hidden channels
  174. self.cv1 = Conv(c1, c_, k, s, None, g, act)
  175. self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
  176. def forward(self, x):
  177. y = self.cv1(x)
  178. return torch.cat([y, self.cv2(y)], 1)
  179. class GhostBottleneck(nn.Module):
  180. # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
  181. def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
  182. super().__init__()
  183. c_ = c2 // 2
  184. self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
  185. DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
  186. GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
  187. self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
  188. Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
  189. def forward(self, x):
  190. return self.conv(x) + self.shortcut(x)
  191. class Contract(nn.Module):
  192. # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
  193. def __init__(self, gain=2):
  194. super().__init__()
  195. self.gain = gain
  196. def forward(self, x):
  197. b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
  198. s = self.gain
  199. x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
  200. x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
  201. return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
  202. class Expand(nn.Module):
  203. # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
  204. def __init__(self, gain=2):
  205. super().__init__()
  206. self.gain = gain
  207. def forward(self, x):
  208. b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
  209. s = self.gain
  210. x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
  211. x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
  212. return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
  213. class Concat(nn.Module):
  214. # Concatenate a list of tensors along dimension
  215. def __init__(self, dimension=1):
  216. super().__init__()
  217. self.d = dimension
  218. def forward(self, x):
  219. return torch.cat(x, self.d)
  220. class DetectMultiBackend(nn.Module):
  221. # YOLOv5 MultiBackend class for python inference on various backends
  222. def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None):
  223. # Usage:
  224. # PyTorch: weights = *.pt
  225. # TorchScript: *.torchscript
  226. # ONNX Runtime: *.onnx
  227. # ONNX OpenCV DNN: *.onnx with --dnn
  228. # OpenVINO: *.xml
  229. # CoreML: *.mlmodel
  230. # TensorRT: *.engine
  231. # TensorFlow SavedModel: *_saved_model
  232. # TensorFlow GraphDef: *.pb
  233. # TensorFlow Lite: *.tflite
  234. # TensorFlow Edge TPU: *_edgetpu.tflite
  235. from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
  236. super().__init__()
  237. w = str(weights[0] if isinstance(weights, list) else weights)
  238. pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
  239. stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
  240. w = attempt_download(w) # download if not local
  241. if data: # data.yaml path (optional)
  242. with open(data, errors='ignore') as f:
  243. names = yaml.safe_load(f)['names'] # class names
  244. if pt: # PyTorch
  245. model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
  246. stride = max(int(model.stride.max()), 32) # model stride
  247. names = model.module.names if hasattr(model, 'module') else model.names # get class names
  248. self.model = model # explicitly assign for to(), cpu(), cuda(), half()
  249. elif jit: # TorchScript
  250. LOGGER.info(f'Loading {w} for TorchScript inference...')
  251. extra_files = {'config.txt': ''} # model metadata
  252. model = torch.jit.load(w, _extra_files=extra_files)
  253. if extra_files['config.txt']:
  254. d = json.loads(extra_files['config.txt']) # extra_files dict
  255. stride, names = int(d['stride']), d['names']
  256. elif dnn: # ONNX OpenCV DNN
  257. LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
  258. check_requirements(('opencv-python>=4.5.4',))
  259. net = cv2.dnn.readNetFromONNX(w)
  260. elif onnx: # ONNX Runtime
  261. LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
  262. cuda = torch.cuda.is_available()
  263. check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
  264. import onnxruntime
  265. providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
  266. session = onnxruntime.InferenceSession(w, providers=providers)
  267. elif xml: # OpenVINO
  268. LOGGER.info(f'Loading {w} for OpenVINO inference...')
  269. check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
  270. import openvino.inference_engine as ie
  271. core = ie.IECore()
  272. if not Path(w).is_file(): # if not *.xml
  273. w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
  274. network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
  275. executable_network = core.load_network(network, device_name='CPU', num_requests=1)
  276. elif engine: # TensorRT
  277. LOGGER.info(f'Loading {w} for TensorRT inference...')
  278. import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
  279. check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
  280. Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
  281. trt_fp16_input = False
  282. logger = trt.Logger(trt.Logger.INFO)
  283. with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
  284. model = runtime.deserialize_cuda_engine(f.read())
  285. bindings = OrderedDict()
  286. for index in range(model.num_bindings):
  287. name = model.get_binding_name(index)
  288. dtype = trt.nptype(model.get_binding_dtype(index))
  289. shape = tuple(model.get_binding_shape(index))
  290. data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
  291. bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
  292. if model.binding_is_input(index) and dtype == np.float16:
  293. trt_fp16_input = True
  294. binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
  295. context = model.create_execution_context()
  296. batch_size = bindings['images'].shape[0]
  297. elif coreml: # CoreML
  298. LOGGER.info(f'Loading {w} for CoreML inference...')
  299. import coremltools as ct
  300. model = ct.models.MLModel(w)
  301. else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
  302. if saved_model: # SavedModel
  303. LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
  304. import tensorflow as tf
  305. keras = False # assume TF1 saved_model
  306. model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
  307. elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
  308. LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
  309. import tensorflow as tf
  310. def wrap_frozen_graph(gd, inputs, outputs):
  311. x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
  312. ge = x.graph.as_graph_element
  313. return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
  314. gd = tf.Graph().as_graph_def() # graph_def
  315. gd.ParseFromString(open(w, 'rb').read())
  316. frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
  317. elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
  318. try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
  319. from tflite_runtime.interpreter import Interpreter, load_delegate
  320. except ImportError:
  321. import tensorflow as tf
  322. Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
  323. if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
  324. LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
  325. delegate = {'Linux': 'libedgetpu.so.1',
  326. 'Darwin': 'libedgetpu.1.dylib',
  327. 'Windows': 'edgetpu.dll'}[platform.system()]
  328. interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
  329. else: # Lite
  330. LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
  331. interpreter = Interpreter(model_path=w) # load TFLite model
  332. interpreter.allocate_tensors() # allocate
  333. input_details = interpreter.get_input_details() # inputs
  334. output_details = interpreter.get_output_details() # outputs
  335. elif tfjs:
  336. raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
  337. self.__dict__.update(locals()) # assign all variables to self
  338. def forward(self, im, augment=False, visualize=False, val=False):
  339. # YOLOv5 MultiBackend inference
  340. b, ch, h, w = im.shape # batch, channel, height, width
  341. if self.pt or self.jit: # PyTorch
  342. y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
  343. return y if val else y[0]
  344. elif self.dnn: # ONNX OpenCV DNN
  345. im = im.cpu().numpy() # torch to numpy
  346. self.net.setInput(im)
  347. y = self.net.forward()
  348. elif self.onnx: # ONNX Runtime
  349. im = im.cpu().numpy() # torch to numpy
  350. y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
  351. elif self.xml: # OpenVINO
  352. im = im.cpu().numpy() # FP32
  353. desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW') # Tensor Description
  354. request = self.executable_network.requests[0] # inference request
  355. request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im)) # name=next(iter(request.input_blobs))
  356. request.infer()
  357. y = request.output_blobs['output'].buffer # name=next(iter(request.output_blobs))
  358. elif self.engine: # TensorRT
  359. assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
  360. self.binding_addrs['images'] = int(im.data_ptr())
  361. self.context.execute_v2(list(self.binding_addrs.values()))
  362. y = self.bindings['output'].data
  363. elif self.coreml: # CoreML
  364. im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
  365. im = Image.fromarray((im[0] * 255).astype('uint8'))
  366. # im = im.resize((192, 320), Image.ANTIALIAS)
  367. y = self.model.predict({'image': im}) # coordinates are xywh normalized
  368. if 'confidence' in y:
  369. box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
  370. conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
  371. y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
  372. else:
  373. k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
  374. y = y[k] # output
  375. else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
  376. im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
  377. if self.saved_model: # SavedModel
  378. y = (self.model(im, training=False) if self.keras else self.model(im)[0]).numpy()
  379. elif self.pb: # GraphDef
  380. y = self.frozen_func(x=self.tf.constant(im)).numpy()
  381. else: # Lite or Edge TPU
  382. input, output = self.input_details[0], self.output_details[0]
  383. int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
  384. if int8:
  385. scale, zero_point = input['quantization']
  386. im = (im / scale + zero_point).astype(np.uint8) # de-scale
  387. self.interpreter.set_tensor(input['index'], im)
  388. self.interpreter.invoke()
  389. y = self.interpreter.get_tensor(output['index'])
  390. if int8:
  391. scale, zero_point = output['quantization']
  392. y = (y.astype(np.float32) - zero_point) * scale # re-scale
  393. y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
  394. y = torch.tensor(y) if isinstance(y, np.ndarray) else y
  395. return (y, []) if val else y
  396. def warmup(self, imgsz=(1, 3, 640, 640), half=False):
  397. # Warmup model by running inference once
  398. if self.pt or self.jit or self.onnx or self.engine: # warmup types
  399. if isinstance(self.device, torch.device) and self.device.type != 'cpu': # only warmup GPU models
  400. im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float) # input image
  401. self.forward(im) # warmup
  402. @staticmethod
  403. def model_type(p='path/to/model.pt'):
  404. # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
  405. from export import export_formats
  406. suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
  407. check_suffix(p, suffixes) # checks
  408. p = Path(p).name # eliminate trailing separators
  409. pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
  410. xml |= xml2 # *_openvino_model or *.xml
  411. tflite &= not edgetpu # *.tflite
  412. return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
  413. class AutoShape(nn.Module):
  414. # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
  415. conf = 0.25 # NMS confidence threshold
  416. iou = 0.45 # NMS IoU threshold
  417. agnostic = False # NMS class-agnostic
  418. multi_label = False # NMS multiple labels per box
  419. classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
  420. max_det = 1000 # maximum number of detections per image
  421. amp = False # Automatic Mixed Precision (AMP) inference
  422. def __init__(self, model):
  423. super().__init__()
  424. LOGGER.info('Adding AutoShape... ')
  425. copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
  426. self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
  427. self.pt = not self.dmb or model.pt # PyTorch model
  428. self.model = model.eval()
  429. def _apply(self, fn):
  430. # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
  431. self = super()._apply(fn)
  432. if self.pt:
  433. m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
  434. m.stride = fn(m.stride)
  435. m.grid = list(map(fn, m.grid))
  436. if isinstance(m.anchor_grid, list):
  437. m.anchor_grid = list(map(fn, m.anchor_grid))
  438. return self
  439. @torch.no_grad()
  440. def forward(self, imgs, size=640, augment=False, profile=False):
  441. # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
  442. # file: imgs = 'data/images/zidane.jpg' # str or PosixPath
  443. # URI: = 'https://ultralytics.com/images/zidane.jpg'
  444. # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
  445. # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
  446. # numpy: = np.zeros((640,1280,3)) # HWC
  447. # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
  448. # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
  449. t = [time_sync()]
  450. p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type
  451. autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
  452. if isinstance(imgs, torch.Tensor): # torch
  453. with amp.autocast(enabled=autocast):
  454. return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
  455. # Pre-process
  456. n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
  457. shape0, shape1, files = [], [], [] # image and inference shapes, filenames
  458. for i, im in enumerate(imgs):
  459. f = f'image{i}' # filename
  460. if isinstance(im, (str, Path)): # filename or uri
  461. im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
  462. im = np.asarray(exif_transpose(im))
  463. elif isinstance(im, Image.Image): # PIL Image
  464. im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
  465. files.append(Path(f).with_suffix('.jpg').name)
  466. if im.shape[0] < 5: # image in CHW
  467. im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
  468. im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
  469. s = im.shape[:2] # HWC
  470. shape0.append(s) # image shape
  471. g = (size / max(s)) # gain
  472. shape1.append([y * g for y in s])
  473. imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
  474. shape1 = [make_divisible(x, self.stride) for x in np.stack(shape1, 0).max(0)] # inference shape
  475. x = [letterbox(im, new_shape=shape1 if self.pt else size, auto=False)[0] for im in imgs] # pad
  476. x = np.stack(x, 0) if n > 1 else x[0][None] # stack
  477. x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
  478. x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
  479. t.append(time_sync())
  480. with amp.autocast(enabled=autocast):
  481. # Inference
  482. y = self.model(x, augment, profile) # forward
  483. t.append(time_sync())
  484. # Post-process
  485. y = non_max_suppression(y if self.dmb else y[0], self.conf, iou_thres=self.iou, classes=self.classes,
  486. agnostic=self.agnostic, multi_label=self.multi_label, max_det=self.max_det) # NMS
  487. for i in range(n):
  488. scale_coords(shape1, y[i][:, :4], shape0[i])
  489. t.append(time_sync())
  490. return Detections(imgs, y, files, t, self.names, x.shape)
  491. class Detections:
  492. # YOLOv5 detections class for inference results
  493. def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
  494. super().__init__()
  495. d = pred[0].device # device
  496. gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
  497. self.imgs = imgs # list of images as numpy arrays
  498. self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
  499. self.names = names # class names
  500. self.files = files # image filenames
  501. self.times = times # profiling times
  502. self.xyxy = pred # xyxy pixels
  503. self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
  504. self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
  505. self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
  506. self.n = len(self.pred) # number of images (batch size)
  507. self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
  508. self.s = shape # inference BCHW shape
  509. def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
  510. crops = []
  511. for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
  512. s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
  513. if pred.shape[0]:
  514. for c in pred[:, -1].unique():
  515. n = (pred[:, -1] == c).sum() # detections per class
  516. s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
  517. if show or save or render or crop:
  518. annotator = Annotator(im, example=str(self.names))
  519. for *box, conf, cls in reversed(pred): # xyxy, confidence, class
  520. label = f'{self.names[int(cls)]} {conf:.2f}'
  521. if crop:
  522. file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
  523. crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
  524. 'im': save_one_box(box, im, file=file, save=save)})
  525. else: # all others
  526. annotator.box_label(box, label, color=colors(cls))
  527. im = annotator.im
  528. else:
  529. s += '(no detections)'
  530. im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
  531. if pprint:
  532. LOGGER.info(s.rstrip(', '))
  533. if show:
  534. im.show(self.files[i]) # show
  535. if save:
  536. f = self.files[i]
  537. im.save(save_dir / f) # save
  538. if i == self.n - 1:
  539. LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
  540. if render:
  541. self.imgs[i] = np.asarray(im)
  542. if crop:
  543. if save:
  544. LOGGER.info(f'Saved results to {save_dir}\n')
  545. return crops
  546. def print(self):
  547. self.display(pprint=True) # print results
  548. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
  549. self.t)
  550. def show(self):
  551. self.display(show=True) # show results
  552. def save(self, save_dir='runs/detect/exp'):
  553. save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
  554. self.display(save=True, save_dir=save_dir) # save results
  555. def crop(self, save=True, save_dir='runs/detect/exp'):
  556. save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
  557. return self.display(crop=True, save=save, save_dir=save_dir) # crop results
  558. def render(self):
  559. self.display(render=True) # render results
  560. return self.imgs
  561. def pandas(self):
  562. # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
  563. new = copy(self) # return copy
  564. ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
  565. cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
  566. for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
  567. a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
  568. setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
  569. return new
  570. def tolist(self):
  571. # return a list of Detections objects, i.e. 'for result in results.tolist():'
  572. r = range(self.n) # iterable
  573. x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
  574. # for d in x:
  575. # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
  576. # setattr(d, k, getattr(d, k)[0]) # pop out of list
  577. return x
  578. def __len__(self):
  579. return self.n
  580. class Classify(nn.Module):
  581. # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
  582. def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
  583. super().__init__()
  584. self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
  585. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
  586. self.flat = nn.Flatten()
  587. def forward(self, x):
  588. z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
  589. return self.flat(self.conv(z)) # flatten to x(b,c2)