You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

696 lines
33KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Common modules
  4. """
  5. import json
  6. import math
  7. import platform
  8. import warnings
  9. from collections import OrderedDict, namedtuple
  10. from copy import copy
  11. from pathlib import Path
  12. import cv2
  13. import numpy as np
  14. import pandas as pd
  15. import requests
  16. import torch
  17. import torch.nn as nn
  18. import yaml
  19. from PIL import Image
  20. from torch.cuda import amp
  21. from utils.datasets import exif_transpose, letterbox
  22. from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
  23. make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
  24. from utils.plots import Annotator, colors, save_one_box
  25. from utils.torch_utils import copy_attr, time_sync
  26. def autopad(k, p=None): # kernel, padding
  27. # Pad to 'same'
  28. if p is None:
  29. p = k // 2 if isinstance(k, int) else (x // 2 for x in k) # auto-pad
  30. return p
  31. class Conv(nn.Module):
  32. # Standard convolution
  33. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  34. super().__init__()
  35. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
  36. self.bn = nn.BatchNorm2d(c2)
  37. self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
  38. def forward(self, x):
  39. return self.act(self.bn(self.conv(x)))
  40. def forward_fuse(self, x):
  41. return self.act(self.conv(x))
  42. class DWConv(Conv):
  43. # Depth-wise convolution class
  44. def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  45. super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
  46. class TransformerLayer(nn.Module):
  47. # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
  48. def __init__(self, c, num_heads):
  49. super().__init__()
  50. self.q = nn.Linear(c, c, bias=False)
  51. self.k = nn.Linear(c, c, bias=False)
  52. self.v = nn.Linear(c, c, bias=False)
  53. self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
  54. self.fc1 = nn.Linear(c, c, bias=False)
  55. self.fc2 = nn.Linear(c, c, bias=False)
  56. def forward(self, x):
  57. x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
  58. x = self.fc2(self.fc1(x)) + x
  59. return x
  60. class TransformerBlock(nn.Module):
  61. # Vision Transformer https://arxiv.org/abs/2010.11929
  62. def __init__(self, c1, c2, num_heads, num_layers):
  63. super().__init__()
  64. self.conv = None
  65. if c1 != c2:
  66. self.conv = Conv(c1, c2)
  67. self.linear = nn.Linear(c2, c2) # learnable position embedding
  68. self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
  69. self.c2 = c2
  70. def forward(self, x):
  71. if self.conv is not None:
  72. x = self.conv(x)
  73. b, _, w, h = x.shape
  74. p = x.flatten(2).permute(2, 0, 1)
  75. return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
  76. class Bottleneck(nn.Module):
  77. # Standard bottleneck
  78. def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
  79. super().__init__()
  80. c_ = int(c2 * e) # hidden channels
  81. self.cv1 = Conv(c1, c_, 1, 1)
  82. self.cv2 = Conv(c_, c2, 3, 1, g=g)
  83. self.add = shortcut and c1 == c2
  84. def forward(self, x):
  85. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
  86. class BottleneckCSP(nn.Module):
  87. # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
  88. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
  89. super().__init__()
  90. c_ = int(c2 * e) # hidden channels
  91. self.cv1 = Conv(c1, c_, 1, 1)
  92. self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
  93. self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
  94. self.cv4 = Conv(2 * c_, c2, 1, 1)
  95. self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
  96. self.act = nn.SiLU()
  97. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
  98. def forward(self, x):
  99. y1 = self.cv3(self.m(self.cv1(x)))
  100. y2 = self.cv2(x)
  101. return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
  102. class C3(nn.Module):
  103. # CSP Bottleneck with 3 convolutions
  104. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
  105. super().__init__()
  106. c_ = int(c2 * e) # hidden channels
  107. self.cv1 = Conv(c1, c_, 1, 1)
  108. self.cv2 = Conv(c1, c_, 1, 1)
  109. self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
  110. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
  111. # self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
  112. def forward(self, x):
  113. return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
  114. class C3TR(C3):
  115. # C3 module with TransformerBlock()
  116. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  117. super().__init__(c1, c2, n, shortcut, g, e)
  118. c_ = int(c2 * e)
  119. self.m = TransformerBlock(c_, c_, 4, n)
  120. class C3SPP(C3):
  121. # C3 module with SPP()
  122. def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
  123. super().__init__(c1, c2, n, shortcut, g, e)
  124. c_ = int(c2 * e)
  125. self.m = SPP(c_, c_, k)
  126. class C3Ghost(C3):
  127. # C3 module with GhostBottleneck()
  128. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  129. super().__init__(c1, c2, n, shortcut, g, e)
  130. c_ = int(c2 * e) # hidden channels
  131. self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
  132. class SPP(nn.Module):
  133. # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
  134. def __init__(self, c1, c2, k=(5, 9, 13)):
  135. super().__init__()
  136. c_ = c1 // 2 # hidden channels
  137. self.cv1 = Conv(c1, c_, 1, 1)
  138. self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
  139. self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
  140. def forward(self, x):
  141. x = self.cv1(x)
  142. with warnings.catch_warnings():
  143. warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
  144. return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
  145. class SPPF(nn.Module):
  146. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
  147. def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
  148. super().__init__()
  149. c_ = c1 // 2 # hidden channels
  150. self.cv1 = Conv(c1, c_, 1, 1)
  151. self.cv2 = Conv(c_ * 4, c2, 1, 1)
  152. self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
  153. def forward(self, x):
  154. x = self.cv1(x)
  155. with warnings.catch_warnings():
  156. warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
  157. y1 = self.m(x)
  158. y2 = self.m(y1)
  159. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
  160. class Focus(nn.Module):
  161. # Focus wh information into c-space
  162. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  163. super().__init__()
  164. self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
  165. # self.contract = Contract(gain=2)
  166. def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
  167. return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
  168. # return self.conv(self.contract(x))
  169. class GhostConv(nn.Module):
  170. # Ghost Convolution https://github.com/huawei-noah/ghostnet
  171. def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
  172. super().__init__()
  173. c_ = c2 // 2 # hidden channels
  174. self.cv1 = Conv(c1, c_, k, s, None, g, act)
  175. self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
  176. def forward(self, x):
  177. y = self.cv1(x)
  178. return torch.cat((y, self.cv2(y)), 1)
  179. class GhostBottleneck(nn.Module):
  180. # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
  181. def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
  182. super().__init__()
  183. c_ = c2 // 2
  184. self.conv = nn.Sequential(
  185. GhostConv(c1, c_, 1, 1), # pw
  186. DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
  187. GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
  188. self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
  189. act=False)) if s == 2 else nn.Identity()
  190. def forward(self, x):
  191. return self.conv(x) + self.shortcut(x)
  192. class Contract(nn.Module):
  193. # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
  194. def __init__(self, gain=2):
  195. super().__init__()
  196. self.gain = gain
  197. def forward(self, x):
  198. b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
  199. s = self.gain
  200. x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
  201. x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
  202. return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
  203. class Expand(nn.Module):
  204. # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
  205. def __init__(self, gain=2):
  206. super().__init__()
  207. self.gain = gain
  208. def forward(self, x):
  209. b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
  210. s = self.gain
  211. x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
  212. x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
  213. return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
  214. class Concat(nn.Module):
  215. # Concatenate a list of tensors along dimension
  216. def __init__(self, dimension=1):
  217. super().__init__()
  218. self.d = dimension
  219. def forward(self, x):
  220. return torch.cat(x, self.d)
  221. class DetectMultiBackend(nn.Module):
  222. # YOLOv5 MultiBackend class for python inference on various backends
  223. def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False):
  224. # Usage:
  225. # PyTorch: weights = *.pt
  226. # TorchScript: *.torchscript
  227. # ONNX Runtime: *.onnx
  228. # ONNX OpenCV DNN: *.onnx with --dnn
  229. # OpenVINO: *.xml
  230. # CoreML: *.mlmodel
  231. # TensorRT: *.engine
  232. # TensorFlow SavedModel: *_saved_model
  233. # TensorFlow GraphDef: *.pb
  234. # TensorFlow Lite: *.tflite
  235. # TensorFlow Edge TPU: *_edgetpu.tflite
  236. from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
  237. super().__init__()
  238. w = str(weights[0] if isinstance(weights, list) else weights)
  239. pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
  240. stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
  241. w = attempt_download(w) # download if not local
  242. fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
  243. if data: # data.yaml path (optional)
  244. with open(data, errors='ignore') as f:
  245. names = yaml.safe_load(f)['names'] # class names
  246. if pt: # PyTorch
  247. model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
  248. stride = max(int(model.stride.max()), 32) # model stride
  249. names = model.module.names if hasattr(model, 'module') else model.names # get class names
  250. model.half() if fp16 else model.float()
  251. self.model = model # explicitly assign for to(), cpu(), cuda(), half()
  252. elif jit: # TorchScript
  253. LOGGER.info(f'Loading {w} for TorchScript inference...')
  254. extra_files = {'config.txt': ''} # model metadata
  255. model = torch.jit.load(w, _extra_files=extra_files)
  256. model.half() if fp16 else model.float()
  257. if extra_files['config.txt']:
  258. d = json.loads(extra_files['config.txt']) # extra_files dict
  259. stride, names = int(d['stride']), d['names']
  260. elif dnn: # ONNX OpenCV DNN
  261. LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
  262. check_requirements(('opencv-python>=4.5.4',))
  263. net = cv2.dnn.readNetFromONNX(w)
  264. elif onnx: # ONNX Runtime
  265. LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
  266. cuda = torch.cuda.is_available()
  267. check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
  268. import onnxruntime
  269. providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
  270. session = onnxruntime.InferenceSession(w, providers=providers)
  271. elif xml: # OpenVINO
  272. LOGGER.info(f'Loading {w} for OpenVINO inference...')
  273. check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
  274. import openvino.inference_engine as ie
  275. core = ie.IECore()
  276. if not Path(w).is_file(): # if not *.xml
  277. w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
  278. network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
  279. executable_network = core.load_network(network, device_name='CPU', num_requests=1)
  280. elif engine: # TensorRT
  281. LOGGER.info(f'Loading {w} for TensorRT inference...')
  282. import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
  283. check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
  284. Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
  285. logger = trt.Logger(trt.Logger.INFO)
  286. with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
  287. model = runtime.deserialize_cuda_engine(f.read())
  288. bindings = OrderedDict()
  289. fp16 = False # default updated below
  290. for index in range(model.num_bindings):
  291. name = model.get_binding_name(index)
  292. dtype = trt.nptype(model.get_binding_dtype(index))
  293. shape = tuple(model.get_binding_shape(index))
  294. data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
  295. bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
  296. if model.binding_is_input(index) and dtype == np.float16:
  297. fp16 = True
  298. binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
  299. context = model.create_execution_context()
  300. batch_size = bindings['images'].shape[0]
  301. elif coreml: # CoreML
  302. LOGGER.info(f'Loading {w} for CoreML inference...')
  303. import coremltools as ct
  304. model = ct.models.MLModel(w)
  305. else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
  306. if saved_model: # SavedModel
  307. LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
  308. import tensorflow as tf
  309. keras = False # assume TF1 saved_model
  310. model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
  311. elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
  312. LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
  313. import tensorflow as tf
  314. def wrap_frozen_graph(gd, inputs, outputs):
  315. x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
  316. ge = x.graph.as_graph_element
  317. return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
  318. gd = tf.Graph().as_graph_def() # graph_def
  319. gd.ParseFromString(open(w, 'rb').read())
  320. frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
  321. elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
  322. try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
  323. from tflite_runtime.interpreter import Interpreter, load_delegate
  324. except ImportError:
  325. import tensorflow as tf
  326. Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
  327. if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
  328. LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
  329. delegate = {
  330. 'Linux': 'libedgetpu.so.1',
  331. 'Darwin': 'libedgetpu.1.dylib',
  332. 'Windows': 'edgetpu.dll'}[platform.system()]
  333. interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
  334. else: # Lite
  335. LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
  336. interpreter = Interpreter(model_path=w) # load TFLite model
  337. interpreter.allocate_tensors() # allocate
  338. input_details = interpreter.get_input_details() # inputs
  339. output_details = interpreter.get_output_details() # outputs
  340. elif tfjs:
  341. raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
  342. self.__dict__.update(locals()) # assign all variables to self
  343. def forward(self, im, augment=False, visualize=False, val=False):
  344. # YOLOv5 MultiBackend inference
  345. b, ch, h, w = im.shape # batch, channel, height, width
  346. if self.pt or self.jit: # PyTorch
  347. y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
  348. return y if val else y[0]
  349. elif self.dnn: # ONNX OpenCV DNN
  350. im = im.cpu().numpy() # torch to numpy
  351. self.net.setInput(im)
  352. y = self.net.forward()
  353. elif self.onnx: # ONNX Runtime
  354. im = im.cpu().numpy() # torch to numpy
  355. y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
  356. elif self.xml: # OpenVINO
  357. im = im.cpu().numpy() # FP32
  358. desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW') # Tensor Description
  359. request = self.executable_network.requests[0] # inference request
  360. request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im)) # name=next(iter(request.input_blobs))
  361. request.infer()
  362. y = request.output_blobs['output'].buffer # name=next(iter(request.output_blobs))
  363. elif self.engine: # TensorRT
  364. assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
  365. self.binding_addrs['images'] = int(im.data_ptr())
  366. self.context.execute_v2(list(self.binding_addrs.values()))
  367. y = self.bindings['output'].data
  368. elif self.coreml: # CoreML
  369. im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
  370. im = Image.fromarray((im[0] * 255).astype('uint8'))
  371. # im = im.resize((192, 320), Image.ANTIALIAS)
  372. y = self.model.predict({'image': im}) # coordinates are xywh normalized
  373. if 'confidence' in y:
  374. box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
  375. conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
  376. y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
  377. else:
  378. k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
  379. y = y[k] # output
  380. else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
  381. im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
  382. if self.saved_model: # SavedModel
  383. y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
  384. elif self.pb: # GraphDef
  385. y = self.frozen_func(x=self.tf.constant(im)).numpy()
  386. else: # Lite or Edge TPU
  387. input, output = self.input_details[0], self.output_details[0]
  388. int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
  389. if int8:
  390. scale, zero_point = input['quantization']
  391. im = (im / scale + zero_point).astype(np.uint8) # de-scale
  392. self.interpreter.set_tensor(input['index'], im)
  393. self.interpreter.invoke()
  394. y = self.interpreter.get_tensor(output['index'])
  395. if int8:
  396. scale, zero_point = output['quantization']
  397. y = (y.astype(np.float32) - zero_point) * scale # re-scale
  398. y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
  399. if isinstance(y, np.ndarray):
  400. y = torch.tensor(y, device=self.device)
  401. return (y, []) if val else y
  402. def warmup(self, imgsz=(1, 3, 640, 640)):
  403. # Warmup model by running inference once
  404. if any((self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb)): # warmup types
  405. if self.device.type != 'cpu': # only warmup GPU models
  406. im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
  407. for _ in range(2 if self.jit else 1): #
  408. self.forward(im) # warmup
  409. @staticmethod
  410. def model_type(p='path/to/model.pt'):
  411. # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
  412. from export import export_formats
  413. suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
  414. check_suffix(p, suffixes) # checks
  415. p = Path(p).name # eliminate trailing separators
  416. pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
  417. xml |= xml2 # *_openvino_model or *.xml
  418. tflite &= not edgetpu # *.tflite
  419. return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
  420. class AutoShape(nn.Module):
  421. # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
  422. conf = 0.25 # NMS confidence threshold
  423. iou = 0.45 # NMS IoU threshold
  424. agnostic = False # NMS class-agnostic
  425. multi_label = False # NMS multiple labels per box
  426. classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
  427. max_det = 1000 # maximum number of detections per image
  428. amp = False # Automatic Mixed Precision (AMP) inference
  429. def __init__(self, model):
  430. super().__init__()
  431. LOGGER.info('Adding AutoShape... ')
  432. copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
  433. self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
  434. self.pt = not self.dmb or model.pt # PyTorch model
  435. self.model = model.eval()
  436. def _apply(self, fn):
  437. # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
  438. self = super()._apply(fn)
  439. if self.pt:
  440. m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
  441. m.stride = fn(m.stride)
  442. m.grid = list(map(fn, m.grid))
  443. if isinstance(m.anchor_grid, list):
  444. m.anchor_grid = list(map(fn, m.anchor_grid))
  445. return self
  446. @torch.no_grad()
  447. def forward(self, imgs, size=640, augment=False, profile=False):
  448. # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
  449. # file: imgs = 'data/images/zidane.jpg' # str or PosixPath
  450. # URI: = 'https://ultralytics.com/images/zidane.jpg'
  451. # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
  452. # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
  453. # numpy: = np.zeros((640,1280,3)) # HWC
  454. # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
  455. # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
  456. t = [time_sync()]
  457. p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type
  458. autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
  459. if isinstance(imgs, torch.Tensor): # torch
  460. with amp.autocast(autocast):
  461. return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
  462. # Pre-process
  463. n, imgs = (len(imgs), list(imgs)) if isinstance(imgs, (list, tuple)) else (1, [imgs]) # number, list of images
  464. shape0, shape1, files = [], [], [] # image and inference shapes, filenames
  465. for i, im in enumerate(imgs):
  466. f = f'image{i}' # filename
  467. if isinstance(im, (str, Path)): # filename or uri
  468. im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
  469. im = np.asarray(exif_transpose(im))
  470. elif isinstance(im, Image.Image): # PIL Image
  471. im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
  472. files.append(Path(f).with_suffix('.jpg').name)
  473. if im.shape[0] < 5: # image in CHW
  474. im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
  475. im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
  476. s = im.shape[:2] # HWC
  477. shape0.append(s) # image shape
  478. g = (size / max(s)) # gain
  479. shape1.append([y * g for y in s])
  480. imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
  481. shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
  482. x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
  483. x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
  484. x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
  485. t.append(time_sync())
  486. with amp.autocast(autocast):
  487. # Inference
  488. y = self.model(x, augment, profile) # forward
  489. t.append(time_sync())
  490. # Post-process
  491. y = non_max_suppression(y if self.dmb else y[0],
  492. self.conf,
  493. self.iou,
  494. self.classes,
  495. self.agnostic,
  496. self.multi_label,
  497. max_det=self.max_det) # NMS
  498. for i in range(n):
  499. scale_coords(shape1, y[i][:, :4], shape0[i])
  500. t.append(time_sync())
  501. return Detections(imgs, y, files, t, self.names, x.shape)
  502. class Detections:
  503. # YOLOv5 detections class for inference results
  504. def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
  505. super().__init__()
  506. d = pred[0].device # device
  507. gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
  508. self.imgs = imgs # list of images as numpy arrays
  509. self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
  510. self.names = names # class names
  511. self.files = files # image filenames
  512. self.times = times # profiling times
  513. self.xyxy = pred # xyxy pixels
  514. self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
  515. self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
  516. self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
  517. self.n = len(self.pred) # number of images (batch size)
  518. self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
  519. self.s = shape # inference BCHW shape
  520. def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
  521. crops = []
  522. for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
  523. s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
  524. if pred.shape[0]:
  525. for c in pred[:, -1].unique():
  526. n = (pred[:, -1] == c).sum() # detections per class
  527. s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
  528. if show or save or render or crop:
  529. annotator = Annotator(im, example=str(self.names))
  530. for *box, conf, cls in reversed(pred): # xyxy, confidence, class
  531. label = f'{self.names[int(cls)]} {conf:.2f}'
  532. if crop:
  533. file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
  534. crops.append({
  535. 'box': box,
  536. 'conf': conf,
  537. 'cls': cls,
  538. 'label': label,
  539. 'im': save_one_box(box, im, file=file, save=save)})
  540. else: # all others
  541. annotator.box_label(box, label if labels else '', color=colors(cls))
  542. im = annotator.im
  543. else:
  544. s += '(no detections)'
  545. im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
  546. if pprint:
  547. LOGGER.info(s.rstrip(', '))
  548. if show:
  549. im.show(self.files[i]) # show
  550. if save:
  551. f = self.files[i]
  552. im.save(save_dir / f) # save
  553. if i == self.n - 1:
  554. LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
  555. if render:
  556. self.imgs[i] = np.asarray(im)
  557. if crop:
  558. if save:
  559. LOGGER.info(f'Saved results to {save_dir}\n')
  560. return crops
  561. def print(self):
  562. self.display(pprint=True) # print results
  563. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
  564. self.t)
  565. def show(self, labels=True):
  566. self.display(show=True, labels=labels) # show results
  567. def save(self, labels=True, save_dir='runs/detect/exp'):
  568. save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
  569. self.display(save=True, labels=labels, save_dir=save_dir) # save results
  570. def crop(self, save=True, save_dir='runs/detect/exp'):
  571. save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
  572. return self.display(crop=True, save=save, save_dir=save_dir) # crop results
  573. def render(self, labels=True):
  574. self.display(render=True, labels=labels) # render results
  575. return self.imgs
  576. def pandas(self):
  577. # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
  578. new = copy(self) # return copy
  579. ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
  580. cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
  581. for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
  582. a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
  583. setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
  584. return new
  585. def tolist(self):
  586. # return a list of Detections objects, i.e. 'for result in results.tolist():'
  587. r = range(self.n) # iterable
  588. x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
  589. # for d in x:
  590. # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
  591. # setattr(d, k, getattr(d, k)[0]) # pop out of list
  592. return x
  593. def __len__(self):
  594. return self.n
  595. class Classify(nn.Module):
  596. # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
  597. def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
  598. super().__init__()
  599. self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
  600. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
  601. self.flat = nn.Flatten()
  602. def forward(self, x):
  603. z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
  604. return self.flat(self.conv(z)) # flatten to x(b,c2)