No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.

356 líneas
17KB

  1. import argparse
  2. import json
  3. import os
  4. from pathlib import Path
  5. from threading import Thread
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
  13. box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
  14. from utils.metrics import ap_per_class, ConfusionMatrix
  15. from utils.plots import plot_images, output_to_target, plot_study_txt
  16. from utils.torch_utils import select_device, time_synchronized
  17. @torch.no_grad()
  18. def test(data,
  19. weights=None, # model.pt path(s)
  20. batch_size=32, # batch size
  21. imgsz=640, # inference size (pixels)
  22. conf_thres=0.001, # confidence threshold
  23. iou_thres=0.6, # NMS IoU threshold
  24. task='val', # train, val, test, speed or study
  25. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  26. single_cls=False, # treat as single-class dataset
  27. augment=False, # augmented inference
  28. verbose=False, # verbose output
  29. save_txt=False, # save results to *.txt
  30. save_hybrid=False, # save label+prediction hybrid results to *.txt
  31. save_conf=False, # save confidences in --save-txt labels
  32. save_json=False, # save a cocoapi-compatible JSON results file
  33. project='runs/test', # save to project/name
  34. name='exp', # save to project/name
  35. exist_ok=False, # existing project/name ok, do not increment
  36. half=True, # use FP16 half-precision inference
  37. model=None,
  38. dataloader=None,
  39. save_dir=Path(''),
  40. plots=True,
  41. wandb_logger=None,
  42. compute_loss=None,
  43. ):
  44. # Initialize/load model and set device
  45. training = model is not None
  46. if training: # called by train.py
  47. device = next(model.parameters()).device # get model device
  48. else: # called directly
  49. device = select_device(device, batch_size=batch_size)
  50. # Directories
  51. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  52. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  53. # Load model
  54. model = attempt_load(weights, map_location=device) # load FP32 model
  55. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  56. imgsz = check_img_size(imgsz, s=gs) # check image size
  57. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  58. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  59. # model = nn.DataParallel(model)
  60. # Half
  61. half &= device.type != 'cpu' # half precision only supported on CUDA
  62. if half:
  63. model.half()
  64. # Configure
  65. model.eval()
  66. if isinstance(data, str):
  67. with open(data) as f:
  68. data = yaml.safe_load(f)
  69. check_dataset(data) # check
  70. is_coco = type(data['val']) is str and data['val'].endswith('coco/val2017.txt') # COCO dataset
  71. nc = 1 if single_cls else int(data['nc']) # number of classes
  72. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  73. niou = iouv.numel()
  74. # Logging
  75. log_imgs = 0
  76. if wandb_logger and wandb_logger.wandb:
  77. log_imgs = min(wandb_logger.log_imgs, 100)
  78. # Dataloader
  79. if not training:
  80. if device.type != 'cpu':
  81. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  82. task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  83. dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True,
  84. prefix=colorstr(f'{task}: '))[0]
  85. seen = 0
  86. confusion_matrix = ConfusionMatrix(nc=nc)
  87. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  88. coco91class = coco80_to_coco91_class()
  89. s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  90. p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
  91. loss = torch.zeros(3, device=device)
  92. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  93. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  94. t_ = time_synchronized()
  95. img = img.to(device, non_blocking=True)
  96. img = img.half() if half else img.float() # uint8 to fp16/32
  97. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  98. targets = targets.to(device)
  99. nb, _, height, width = img.shape # batch size, channels, height, width
  100. t = time_synchronized()
  101. t0 += t - t_
  102. # Run model
  103. out, train_out = model(img, augment=augment) # inference and training outputs
  104. t1 += time_synchronized() - t
  105. # Compute loss
  106. if compute_loss:
  107. loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
  108. # Run NMS
  109. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  110. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  111. t = time_synchronized()
  112. out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
  113. t2 += time_synchronized() - t
  114. # Statistics per image
  115. for si, pred in enumerate(out):
  116. labels = targets[targets[:, 0] == si, 1:]
  117. nl = len(labels)
  118. tcls = labels[:, 0].tolist() if nl else [] # target class
  119. path = Path(paths[si])
  120. seen += 1
  121. if len(pred) == 0:
  122. if nl:
  123. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  124. continue
  125. # Predictions
  126. if single_cls:
  127. pred[:, 5] = 0
  128. predn = pred.clone()
  129. scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
  130. # Append to text file
  131. if save_txt:
  132. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  133. for *xyxy, conf, cls in predn.tolist():
  134. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  135. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  136. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  137. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  138. # W&B logging - Media Panel plots
  139. if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
  140. if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
  141. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  142. "class_id": int(cls),
  143. "box_caption": "%s %.3f" % (names[cls], conf),
  144. "scores": {"class_score": conf},
  145. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  146. boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
  147. wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
  148. wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
  149. # Append to pycocotools JSON dictionary
  150. if save_json:
  151. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  152. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  153. box = xyxy2xywh(predn[:, :4]) # xywh
  154. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  155. for p, b in zip(pred.tolist(), box.tolist()):
  156. jdict.append({'image_id': image_id,
  157. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  158. 'bbox': [round(x, 3) for x in b],
  159. 'score': round(p[4], 5)})
  160. # Assign all predictions as incorrect
  161. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  162. if nl:
  163. detected = [] # target indices
  164. tcls_tensor = labels[:, 0]
  165. # target boxes
  166. tbox = xywh2xyxy(labels[:, 1:5])
  167. scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
  168. if plots:
  169. confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
  170. # Per target class
  171. for cls in torch.unique(tcls_tensor):
  172. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # target indices
  173. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # prediction indices
  174. # Search for detections
  175. if pi.shape[0]:
  176. # Prediction to target ious
  177. ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
  178. # Append detections
  179. detected_set = set()
  180. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  181. d = ti[i[j]] # detected target
  182. if d.item() not in detected_set:
  183. detected_set.add(d.item())
  184. detected.append(d)
  185. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  186. if len(detected) == nl: # all targets already located in image
  187. break
  188. # Append statistics (correct, conf, pcls, tcls)
  189. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  190. # Plot images
  191. if plots and batch_i < 3:
  192. f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
  193. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  194. f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
  195. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  196. # Compute statistics
  197. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  198. if len(stats) and stats[0].any():
  199. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  200. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  201. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  202. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  203. else:
  204. nt = torch.zeros(1)
  205. # Print results
  206. pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
  207. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  208. # Print results per class
  209. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  210. for i, c in enumerate(ap_class):
  211. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  212. # Print speeds
  213. t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image
  214. if not training:
  215. shape = (batch_size, 3, imgsz, imgsz)
  216. print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
  217. # Plots
  218. if plots:
  219. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  220. if wandb_logger and wandb_logger.wandb:
  221. val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
  222. wandb_logger.log({"Validation": val_batches})
  223. if wandb_images:
  224. wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
  225. # Save JSON
  226. if save_json and len(jdict):
  227. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  228. anno_json = '../coco/annotations/instances_val2017.json' # annotations json
  229. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  230. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  231. with open(pred_json, 'w') as f:
  232. json.dump(jdict, f)
  233. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  234. check_requirements(['pycocotools'])
  235. from pycocotools.coco import COCO
  236. from pycocotools.cocoeval import COCOeval
  237. anno = COCO(anno_json) # init annotations api
  238. pred = anno.loadRes(pred_json) # init predictions api
  239. eval = COCOeval(anno, pred, 'bbox')
  240. if is_coco:
  241. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  242. eval.evaluate()
  243. eval.accumulate()
  244. eval.summarize()
  245. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  246. except Exception as e:
  247. print(f'pycocotools unable to run: {e}')
  248. # Return results
  249. model.float() # for training
  250. if not training:
  251. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  252. print(f"Results saved to {save_dir}{s}")
  253. maps = np.zeros(nc) + map
  254. for i, c in enumerate(ap_class):
  255. maps[c] = ap[i]
  256. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  257. def parse_opt():
  258. parser = argparse.ArgumentParser(prog='test.py')
  259. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  260. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  261. parser.add_argument('--batch-size', type=int, default=32, help='batch size')
  262. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  263. parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
  264. parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
  265. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  266. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  267. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  268. parser.add_argument('--augment', action='store_true', help='augmented inference')
  269. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  270. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  271. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  272. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  273. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  274. parser.add_argument('--project', default='runs/test', help='save to project/name')
  275. parser.add_argument('--name', default='exp', help='save to project/name')
  276. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  277. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  278. opt = parser.parse_args()
  279. opt.save_json |= opt.data.endswith('coco.yaml')
  280. opt.save_txt |= opt.save_hybrid
  281. opt.data = check_file(opt.data) # check file
  282. return opt
  283. def main(opt):
  284. set_logging()
  285. print(colorstr('test: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  286. check_requirements(exclude=('tensorboard', 'thop'))
  287. if opt.task in ('train', 'val', 'test'): # run normally
  288. test(**vars(opt))
  289. elif opt.task == 'speed': # speed benchmarks
  290. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  291. test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
  292. save_json=False, plots=False)
  293. elif opt.task == 'study': # run over a range of settings and save/plot
  294. # python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
  295. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  296. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  297. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  298. y = [] # y axis
  299. for i in x: # img-size
  300. print(f'\nRunning {f} point {i}...')
  301. r, _, t = test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
  302. iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
  303. y.append(r + t) # results and times
  304. np.savetxt(f, y, fmt='%10.4g') # save
  305. os.system('zip -r study.zip study_*.txt')
  306. plot_study_txt(x=x) # plot
  307. if __name__ == "__main__":
  308. opt = parse_opt()
  309. main(opt)