|
- # parameters
- nc: 80 # number of classes
- depth_multiple: 0.33 # model depth multiple
- width_multiple: 0.50 # layer channel multiple
-
- # anchors
- anchors:
- - [10,13, 16,30, 33,23] # P3/8
- - [30,61, 62,45, 59,119] # P4/16
- - [116,90, 156,198, 373,326] # P5/32
-
- # yolov5 backbone
- backbone:
- # [from, number, module, args]
- [[-1, 1, Focus, [64, 3]], # 1-P1/2
- [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
- [-1, 3, Bottleneck, [128]],
- [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
- [-1, 9, BottleneckCSP, [256]],
- [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
- [-1, 9, BottleneckCSP, [512]],
- [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
- [-1, 1, SPP, [1024, [5, 9, 13]]],
- [-1, 6, BottleneckCSP, [1024]], # 10
- ]
-
- # yolov5 head
- head:
- [[-1, 3, BottleneckCSP, [1024, False]], # 11
- [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)
-
- [-2, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
- [-1, 1, Conv, [512, 1, 1]],
- [-1, 3, BottleneckCSP, [512, False]],
- [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)
-
- [-2, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
- [-1, 1, Conv, [256, 1, 1]],
- [-1, 3, BottleneckCSP, [256, False]],
- [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)
-
- [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
|