Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.

213 lines
10KB

  1. import argparse
  2. import time
  3. from pathlib import Path
  4. import cv2
  5. import torch
  6. import torch.backends.cudnn as cudnn
  7. from models.experimental import attempt_load
  8. from utils.datasets import LoadStreams, LoadImages
  9. from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
  10. apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
  11. from utils.plots import colors, plot_one_box
  12. from utils.torch_utils import select_device, load_classifier, time_synchronized
  13. @torch.no_grad()
  14. def detect(weights='yolov5s.pt', # model.pt path(s)
  15. source='data/images', # file/dir/URL/glob, 0 for webcam
  16. imgsz=640, # inference size (pixels)
  17. conf_thres=0.25, # confidence threshold
  18. iou_thres=0.45, # NMS IOU threshold
  19. max_det=1000, # maximum detections per image
  20. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  21. view_img=False, # show results
  22. save_txt=False, # save results to *.txt
  23. save_conf=False, # save confidences in --save-txt labels
  24. save_crop=False, # save cropped prediction boxes
  25. nosave=False, # do not save images/videos
  26. classes=None, # filter by class: --class 0, or --class 0 2 3
  27. agnostic_nms=False, # class-agnostic NMS
  28. augment=False, # augmented inference
  29. update=False, # update all models
  30. project='runs/detect', # save results to project/name
  31. name='exp', # save results to project/name
  32. exist_ok=False, # existing project/name ok, do not increment
  33. line_thickness=3, # bounding box thickness (pixels)
  34. hide_labels=False, # hide labels
  35. hide_conf=False, # hide confidences
  36. half=False, # use FP16 half-precision inference
  37. ):
  38. save_img = not nosave and not source.endswith('.txt') # save inference images
  39. webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
  40. ('rtsp://', 'rtmp://', 'http://', 'https://'))
  41. # Directories
  42. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  43. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  44. # Initialize
  45. set_logging()
  46. device = select_device(device)
  47. half &= device.type != 'cpu' # half precision only supported on CUDA
  48. # Load model
  49. model = attempt_load(weights, map_location=device) # load FP32 model
  50. stride = int(model.stride.max()) # model stride
  51. imgsz = check_img_size(imgsz, s=stride) # check image size
  52. names = model.module.names if hasattr(model, 'module') else model.names # get class names
  53. if half:
  54. model.half() # to FP16
  55. # Second-stage classifier
  56. classify = False
  57. if classify:
  58. modelc = load_classifier(name='resnet50', n=2) # initialize
  59. modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()
  60. # Set Dataloader
  61. vid_path, vid_writer = None, None
  62. if webcam:
  63. view_img = check_imshow()
  64. cudnn.benchmark = True # set True to speed up constant image size inference
  65. dataset = LoadStreams(source, img_size=imgsz, stride=stride)
  66. else:
  67. dataset = LoadImages(source, img_size=imgsz, stride=stride)
  68. # Run inference
  69. if device.type != 'cpu':
  70. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  71. t0 = time.time()
  72. for path, img, im0s, vid_cap in dataset:
  73. img = torch.from_numpy(img).to(device)
  74. img = img.half() if half else img.float() # uint8 to fp16/32
  75. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  76. if img.ndimension() == 3:
  77. img = img.unsqueeze(0)
  78. # Inference
  79. t1 = time_synchronized()
  80. pred = model(img, augment=augment)[0]
  81. # Apply NMS
  82. pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
  83. t2 = time_synchronized()
  84. # Apply Classifier
  85. if classify:
  86. pred = apply_classifier(pred, modelc, img, im0s)
  87. # Process detections
  88. for i, det in enumerate(pred): # detections per image
  89. if webcam: # batch_size >= 1
  90. p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
  91. else:
  92. p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
  93. p = Path(p) # to Path
  94. save_path = str(save_dir / p.name) # img.jpg
  95. txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
  96. s += '%gx%g ' % img.shape[2:] # print string
  97. gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
  98. imc = im0.copy() if save_crop else im0 # for save_crop
  99. if len(det):
  100. # Rescale boxes from img_size to im0 size
  101. det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
  102. # Print results
  103. for c in det[:, -1].unique():
  104. n = (det[:, -1] == c).sum() # detections per class
  105. s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
  106. # Write results
  107. for *xyxy, conf, cls in reversed(det):
  108. if save_txt: # Write to file
  109. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  110. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  111. with open(txt_path + '.txt', 'a') as f:
  112. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  113. if save_img or save_crop or view_img: # Add bbox to image
  114. c = int(cls) # integer class
  115. label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
  116. plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)
  117. if save_crop:
  118. save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
  119. # Print time (inference + NMS)
  120. print(f'{s}Done. ({t2 - t1:.3f}s)')
  121. # Stream results
  122. if view_img:
  123. cv2.imshow(str(p), im0)
  124. cv2.waitKey(1) # 1 millisecond
  125. # Save results (image with detections)
  126. if save_img:
  127. if dataset.mode == 'image':
  128. cv2.imwrite(save_path, im0)
  129. else: # 'video' or 'stream'
  130. if vid_path != save_path: # new video
  131. vid_path = save_path
  132. if isinstance(vid_writer, cv2.VideoWriter):
  133. vid_writer.release() # release previous video writer
  134. if vid_cap: # video
  135. fps = vid_cap.get(cv2.CAP_PROP_FPS)
  136. w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  137. h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  138. else: # stream
  139. fps, w, h = 30, im0.shape[1], im0.shape[0]
  140. save_path += '.mp4'
  141. vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
  142. vid_writer.write(im0)
  143. if save_txt or save_img:
  144. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  145. print(f"Results saved to {save_dir}{s}")
  146. if update:
  147. strip_optimizer(weights) # update model (to fix SourceChangeWarning)
  148. print(f'Done. ({time.time() - t0:.3f}s)')
  149. def parse_opt():
  150. parser = argparse.ArgumentParser()
  151. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  152. parser.add_argument('--source', type=str, default='data/images', help='file/dir/URL/glob, 0 for webcam')
  153. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  154. parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
  155. parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
  156. parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
  157. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  158. parser.add_argument('--view-img', action='store_true', help='show results')
  159. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  160. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  161. parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
  162. parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
  163. parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
  164. parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
  165. parser.add_argument('--augment', action='store_true', help='augmented inference')
  166. parser.add_argument('--update', action='store_true', help='update all models')
  167. parser.add_argument('--project', default='runs/detect', help='save results to project/name')
  168. parser.add_argument('--name', default='exp', help='save results to project/name')
  169. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  170. parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
  171. parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
  172. parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
  173. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  174. opt = parser.parse_args()
  175. return opt
  176. def main(opt):
  177. print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  178. check_requirements(exclude=('tensorboard', 'thop'))
  179. detect(**vars(opt))
  180. if __name__ == "__main__":
  181. opt = parse_opt()
  182. main(opt)