You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

698 lines
33KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Common modules
  4. """
  5. import json
  6. import math
  7. import platform
  8. import warnings
  9. from collections import OrderedDict, namedtuple
  10. from copy import copy
  11. from pathlib import Path
  12. import cv2
  13. import numpy as np
  14. import pandas as pd
  15. import requests
  16. import torch
  17. import torch.nn as nn
  18. import yaml
  19. from PIL import Image
  20. from torch.cuda import amp
  21. from utils.datasets import exif_transpose, letterbox
  22. from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
  23. make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
  24. from utils.plots import Annotator, colors, save_one_box
  25. from utils.torch_utils import copy_attr, time_sync
  26. def autopad(k, p=None): # kernel, padding
  27. # Pad to 'same'
  28. if p is None:
  29. p = k // 2 if isinstance(k, int) else (x // 2 for x in k) # auto-pad
  30. return p
  31. class Conv(nn.Module):
  32. # Standard convolution
  33. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  34. super().__init__()
  35. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
  36. self.bn = nn.BatchNorm2d(c2)
  37. self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
  38. def forward(self, x):
  39. return self.act(self.bn(self.conv(x)))
  40. def forward_fuse(self, x):
  41. return self.act(self.conv(x))
  42. class DWConv(Conv):
  43. # Depth-wise convolution class
  44. def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  45. super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
  46. class TransformerLayer(nn.Module):
  47. # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
  48. def __init__(self, c, num_heads):
  49. super().__init__()
  50. self.q = nn.Linear(c, c, bias=False)
  51. self.k = nn.Linear(c, c, bias=False)
  52. self.v = nn.Linear(c, c, bias=False)
  53. self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
  54. self.fc1 = nn.Linear(c, c, bias=False)
  55. self.fc2 = nn.Linear(c, c, bias=False)
  56. def forward(self, x):
  57. x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
  58. x = self.fc2(self.fc1(x)) + x
  59. return x
  60. class TransformerBlock(nn.Module):
  61. # Vision Transformer https://arxiv.org/abs/2010.11929
  62. def __init__(self, c1, c2, num_heads, num_layers):
  63. super().__init__()
  64. self.conv = None
  65. if c1 != c2:
  66. self.conv = Conv(c1, c2)
  67. self.linear = nn.Linear(c2, c2) # learnable position embedding
  68. self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
  69. self.c2 = c2
  70. def forward(self, x):
  71. if self.conv is not None:
  72. x = self.conv(x)
  73. b, _, w, h = x.shape
  74. p = x.flatten(2).permute(2, 0, 1)
  75. return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
  76. class Bottleneck(nn.Module):
  77. # Standard bottleneck
  78. def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
  79. super().__init__()
  80. c_ = int(c2 * e) # hidden channels
  81. self.cv1 = Conv(c1, c_, 1, 1)
  82. self.cv2 = Conv(c_, c2, 3, 1, g=g)
  83. self.add = shortcut and c1 == c2
  84. def forward(self, x):
  85. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
  86. class BottleneckCSP(nn.Module):
  87. # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
  88. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
  89. super().__init__()
  90. c_ = int(c2 * e) # hidden channels
  91. self.cv1 = Conv(c1, c_, 1, 1)
  92. self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
  93. self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
  94. self.cv4 = Conv(2 * c_, c2, 1, 1)
  95. self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
  96. self.act = nn.SiLU()
  97. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
  98. def forward(self, x):
  99. y1 = self.cv3(self.m(self.cv1(x)))
  100. y2 = self.cv2(x)
  101. return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
  102. class C3(nn.Module):
  103. # CSP Bottleneck with 3 convolutions
  104. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
  105. super().__init__()
  106. c_ = int(c2 * e) # hidden channels
  107. self.cv1 = Conv(c1, c_, 1, 1)
  108. self.cv2 = Conv(c1, c_, 1, 1)
  109. self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
  110. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
  111. # self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
  112. def forward(self, x):
  113. return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
  114. class C3TR(C3):
  115. # C3 module with TransformerBlock()
  116. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  117. super().__init__(c1, c2, n, shortcut, g, e)
  118. c_ = int(c2 * e)
  119. self.m = TransformerBlock(c_, c_, 4, n)
  120. class C3SPP(C3):
  121. # C3 module with SPP()
  122. def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
  123. super().__init__(c1, c2, n, shortcut, g, e)
  124. c_ = int(c2 * e)
  125. self.m = SPP(c_, c_, k)
  126. class C3Ghost(C3):
  127. # C3 module with GhostBottleneck()
  128. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  129. super().__init__(c1, c2, n, shortcut, g, e)
  130. c_ = int(c2 * e) # hidden channels
  131. self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
  132. class SPP(nn.Module):
  133. # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
  134. def __init__(self, c1, c2, k=(5, 9, 13)):
  135. super().__init__()
  136. c_ = c1 // 2 # hidden channels
  137. self.cv1 = Conv(c1, c_, 1, 1)
  138. self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
  139. self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
  140. def forward(self, x):
  141. x = self.cv1(x)
  142. with warnings.catch_warnings():
  143. warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
  144. return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
  145. class SPPF(nn.Module):
  146. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
  147. def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
  148. super().__init__()
  149. c_ = c1 // 2 # hidden channels
  150. self.cv1 = Conv(c1, c_, 1, 1)
  151. self.cv2 = Conv(c_ * 4, c2, 1, 1)
  152. self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
  153. def forward(self, x):
  154. x = self.cv1(x)
  155. with warnings.catch_warnings():
  156. warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
  157. y1 = self.m(x)
  158. y2 = self.m(y1)
  159. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
  160. class Focus(nn.Module):
  161. # Focus wh information into c-space
  162. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  163. super().__init__()
  164. self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
  165. # self.contract = Contract(gain=2)
  166. def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
  167. return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
  168. # return self.conv(self.contract(x))
  169. class GhostConv(nn.Module):
  170. # Ghost Convolution https://github.com/huawei-noah/ghostnet
  171. def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
  172. super().__init__()
  173. c_ = c2 // 2 # hidden channels
  174. self.cv1 = Conv(c1, c_, k, s, None, g, act)
  175. self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
  176. def forward(self, x):
  177. y = self.cv1(x)
  178. return torch.cat((y, self.cv2(y)), 1)
  179. class GhostBottleneck(nn.Module):
  180. # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
  181. def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
  182. super().__init__()
  183. c_ = c2 // 2
  184. self.conv = nn.Sequential(
  185. GhostConv(c1, c_, 1, 1), # pw
  186. DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
  187. GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
  188. self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
  189. act=False)) if s == 2 else nn.Identity()
  190. def forward(self, x):
  191. return self.conv(x) + self.shortcut(x)
  192. class Contract(nn.Module):
  193. # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
  194. def __init__(self, gain=2):
  195. super().__init__()
  196. self.gain = gain
  197. def forward(self, x):
  198. b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
  199. s = self.gain
  200. x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
  201. x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
  202. return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
  203. class Expand(nn.Module):
  204. # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
  205. def __init__(self, gain=2):
  206. super().__init__()
  207. self.gain = gain
  208. def forward(self, x):
  209. b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
  210. s = self.gain
  211. x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
  212. x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
  213. return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
  214. class Concat(nn.Module):
  215. # Concatenate a list of tensors along dimension
  216. def __init__(self, dimension=1):
  217. super().__init__()
  218. self.d = dimension
  219. def forward(self, x):
  220. return torch.cat(x, self.d)
  221. class DetectMultiBackend(nn.Module):
  222. # YOLOv5 MultiBackend class for python inference on various backends
  223. def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False):
  224. # Usage:
  225. # PyTorch: weights = *.pt
  226. # TorchScript: *.torchscript
  227. # ONNX Runtime: *.onnx
  228. # ONNX OpenCV DNN: *.onnx with --dnn
  229. # OpenVINO: *.xml
  230. # CoreML: *.mlmodel
  231. # TensorRT: *.engine
  232. # TensorFlow SavedModel: *_saved_model
  233. # TensorFlow GraphDef: *.pb
  234. # TensorFlow Lite: *.tflite
  235. # TensorFlow Edge TPU: *_edgetpu.tflite
  236. from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
  237. super().__init__()
  238. w = str(weights[0] if isinstance(weights, list) else weights)
  239. pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
  240. stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
  241. w = attempt_download(w) # download if not local
  242. fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
  243. if data: # data.yaml path (optional)
  244. with open(data, errors='ignore') as f:
  245. names = yaml.safe_load(f)['names'] # class names
  246. if pt: # PyTorch
  247. model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
  248. stride = max(int(model.stride.max()), 32) # model stride
  249. names = model.module.names if hasattr(model, 'module') else model.names # get class names
  250. model.half() if fp16 else model.float()
  251. self.model = model # explicitly assign for to(), cpu(), cuda(), half()
  252. elif jit: # TorchScript
  253. LOGGER.info(f'Loading {w} for TorchScript inference...')
  254. extra_files = {'config.txt': ''} # model metadata
  255. model = torch.jit.load(w, _extra_files=extra_files)
  256. model.half() if fp16 else model.float()
  257. if extra_files['config.txt']:
  258. d = json.loads(extra_files['config.txt']) # extra_files dict
  259. stride, names = int(d['stride']), d['names']
  260. elif dnn: # ONNX OpenCV DNN
  261. LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
  262. check_requirements(('opencv-python>=4.5.4',))
  263. net = cv2.dnn.readNetFromONNX(w)
  264. elif onnx: # ONNX Runtime
  265. LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
  266. cuda = torch.cuda.is_available()
  267. check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
  268. import onnxruntime
  269. providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
  270. session = onnxruntime.InferenceSession(w, providers=providers)
  271. elif xml: # OpenVINO
  272. LOGGER.info(f'Loading {w} for OpenVINO inference...')
  273. check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
  274. import openvino.inference_engine as ie
  275. core = ie.IECore()
  276. if not Path(w).is_file(): # if not *.xml
  277. w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
  278. network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
  279. executable_network = core.load_network(network, device_name='CPU', num_requests=1)
  280. elif engine: # TensorRT
  281. LOGGER.info(f'Loading {w} for TensorRT inference...')
  282. import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
  283. check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
  284. Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
  285. logger = trt.Logger(trt.Logger.INFO)
  286. with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
  287. model = runtime.deserialize_cuda_engine(f.read())
  288. bindings = OrderedDict()
  289. fp16 = False # default updated below
  290. for index in range(model.num_bindings):
  291. name = model.get_binding_name(index)
  292. dtype = trt.nptype(model.get_binding_dtype(index))
  293. shape = tuple(model.get_binding_shape(index))
  294. data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
  295. bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
  296. if model.binding_is_input(index) and dtype == np.float16:
  297. fp16 = True
  298. binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
  299. context = model.create_execution_context()
  300. batch_size = bindings['images'].shape[0]
  301. elif coreml: # CoreML
  302. LOGGER.info(f'Loading {w} for CoreML inference...')
  303. import coremltools as ct
  304. model = ct.models.MLModel(w)
  305. else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
  306. if saved_model: # SavedModel
  307. LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
  308. import tensorflow as tf
  309. keras = False # assume TF1 saved_model
  310. model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
  311. elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
  312. LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
  313. import tensorflow as tf
  314. def wrap_frozen_graph(gd, inputs, outputs):
  315. x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
  316. ge = x.graph.as_graph_element
  317. return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
  318. gd = tf.Graph().as_graph_def() # graph_def
  319. with open(w, 'rb') as f:
  320. gd.ParseFromString(f.read())
  321. frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
  322. elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
  323. try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
  324. from tflite_runtime.interpreter import Interpreter, load_delegate
  325. except ImportError:
  326. import tensorflow as tf
  327. Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
  328. if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
  329. LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
  330. delegate = {
  331. 'Linux': 'libedgetpu.so.1',
  332. 'Darwin': 'libedgetpu.1.dylib',
  333. 'Windows': 'edgetpu.dll'}[platform.system()]
  334. interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
  335. else: # Lite
  336. LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
  337. interpreter = Interpreter(model_path=w) # load TFLite model
  338. interpreter.allocate_tensors() # allocate
  339. input_details = interpreter.get_input_details() # inputs
  340. output_details = interpreter.get_output_details() # outputs
  341. elif tfjs:
  342. raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
  343. self.__dict__.update(locals()) # assign all variables to self
  344. def forward(self, im, augment=False, visualize=False, val=False):
  345. # YOLOv5 MultiBackend inference
  346. b, ch, h, w = im.shape # batch, channel, height, width
  347. if self.pt: # PyTorch
  348. y = self.model(im, augment=augment, visualize=visualize)[0]
  349. elif self.jit: # TorchScript
  350. y = self.model(im)[0]
  351. elif self.dnn: # ONNX OpenCV DNN
  352. im = im.cpu().numpy() # torch to numpy
  353. self.net.setInput(im)
  354. y = self.net.forward()
  355. elif self.onnx: # ONNX Runtime
  356. im = im.cpu().numpy() # torch to numpy
  357. y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
  358. elif self.xml: # OpenVINO
  359. im = im.cpu().numpy() # FP32
  360. desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW') # Tensor Description
  361. request = self.executable_network.requests[0] # inference request
  362. request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im)) # name=next(iter(request.input_blobs))
  363. request.infer()
  364. y = request.output_blobs['output'].buffer # name=next(iter(request.output_blobs))
  365. elif self.engine: # TensorRT
  366. assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
  367. self.binding_addrs['images'] = int(im.data_ptr())
  368. self.context.execute_v2(list(self.binding_addrs.values()))
  369. y = self.bindings['output'].data
  370. elif self.coreml: # CoreML
  371. im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
  372. im = Image.fromarray((im[0] * 255).astype('uint8'))
  373. # im = im.resize((192, 320), Image.ANTIALIAS)
  374. y = self.model.predict({'image': im}) # coordinates are xywh normalized
  375. if 'confidence' in y:
  376. box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
  377. conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
  378. y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
  379. else:
  380. k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
  381. y = y[k] # output
  382. else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
  383. im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
  384. if self.saved_model: # SavedModel
  385. y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
  386. elif self.pb: # GraphDef
  387. y = self.frozen_func(x=self.tf.constant(im)).numpy()
  388. else: # Lite or Edge TPU
  389. input, output = self.input_details[0], self.output_details[0]
  390. int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
  391. if int8:
  392. scale, zero_point = input['quantization']
  393. im = (im / scale + zero_point).astype(np.uint8) # de-scale
  394. self.interpreter.set_tensor(input['index'], im)
  395. self.interpreter.invoke()
  396. y = self.interpreter.get_tensor(output['index'])
  397. if int8:
  398. scale, zero_point = output['quantization']
  399. y = (y.astype(np.float32) - zero_point) * scale # re-scale
  400. y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
  401. if isinstance(y, np.ndarray):
  402. y = torch.tensor(y, device=self.device)
  403. return (y, []) if val else y
  404. def warmup(self, imgsz=(1, 3, 640, 640)):
  405. # Warmup model by running inference once
  406. if any((self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb)): # warmup types
  407. if self.device.type != 'cpu': # only warmup GPU models
  408. im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
  409. for _ in range(2 if self.jit else 1): #
  410. self.forward(im) # warmup
  411. @staticmethod
  412. def model_type(p='path/to/model.pt'):
  413. # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
  414. from export import export_formats
  415. suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
  416. check_suffix(p, suffixes) # checks
  417. p = Path(p).name # eliminate trailing separators
  418. pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
  419. xml |= xml2 # *_openvino_model or *.xml
  420. tflite &= not edgetpu # *.tflite
  421. return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
  422. class AutoShape(nn.Module):
  423. # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
  424. conf = 0.25 # NMS confidence threshold
  425. iou = 0.45 # NMS IoU threshold
  426. agnostic = False # NMS class-agnostic
  427. multi_label = False # NMS multiple labels per box
  428. classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
  429. max_det = 1000 # maximum number of detections per image
  430. amp = False # Automatic Mixed Precision (AMP) inference
  431. def __init__(self, model):
  432. super().__init__()
  433. LOGGER.info('Adding AutoShape... ')
  434. copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
  435. self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
  436. self.pt = not self.dmb or model.pt # PyTorch model
  437. self.model = model.eval()
  438. def _apply(self, fn):
  439. # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
  440. self = super()._apply(fn)
  441. if self.pt:
  442. m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
  443. m.stride = fn(m.stride)
  444. m.grid = list(map(fn, m.grid))
  445. if isinstance(m.anchor_grid, list):
  446. m.anchor_grid = list(map(fn, m.anchor_grid))
  447. return self
  448. @torch.no_grad()
  449. def forward(self, imgs, size=640, augment=False, profile=False):
  450. # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
  451. # file: imgs = 'data/images/zidane.jpg' # str or PosixPath
  452. # URI: = 'https://ultralytics.com/images/zidane.jpg'
  453. # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
  454. # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
  455. # numpy: = np.zeros((640,1280,3)) # HWC
  456. # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
  457. # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
  458. t = [time_sync()]
  459. p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type
  460. autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
  461. if isinstance(imgs, torch.Tensor): # torch
  462. with amp.autocast(autocast):
  463. return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
  464. # Pre-process
  465. n, imgs = (len(imgs), list(imgs)) if isinstance(imgs, (list, tuple)) else (1, [imgs]) # number, list of images
  466. shape0, shape1, files = [], [], [] # image and inference shapes, filenames
  467. for i, im in enumerate(imgs):
  468. f = f'image{i}' # filename
  469. if isinstance(im, (str, Path)): # filename or uri
  470. im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
  471. im = np.asarray(exif_transpose(im))
  472. elif isinstance(im, Image.Image): # PIL Image
  473. im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
  474. files.append(Path(f).with_suffix('.jpg').name)
  475. if im.shape[0] < 5: # image in CHW
  476. im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
  477. im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
  478. s = im.shape[:2] # HWC
  479. shape0.append(s) # image shape
  480. g = (size / max(s)) # gain
  481. shape1.append([y * g for y in s])
  482. imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
  483. shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
  484. x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
  485. x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
  486. x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
  487. t.append(time_sync())
  488. with amp.autocast(autocast):
  489. # Inference
  490. y = self.model(x, augment, profile) # forward
  491. t.append(time_sync())
  492. # Post-process
  493. y = non_max_suppression(y if self.dmb else y[0],
  494. self.conf,
  495. self.iou,
  496. self.classes,
  497. self.agnostic,
  498. self.multi_label,
  499. max_det=self.max_det) # NMS
  500. for i in range(n):
  501. scale_coords(shape1, y[i][:, :4], shape0[i])
  502. t.append(time_sync())
  503. return Detections(imgs, y, files, t, self.names, x.shape)
  504. class Detections:
  505. # YOLOv5 detections class for inference results
  506. def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
  507. super().__init__()
  508. d = pred[0].device # device
  509. gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
  510. self.imgs = imgs # list of images as numpy arrays
  511. self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
  512. self.names = names # class names
  513. self.files = files # image filenames
  514. self.times = times # profiling times
  515. self.xyxy = pred # xyxy pixels
  516. self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
  517. self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
  518. self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
  519. self.n = len(self.pred) # number of images (batch size)
  520. self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
  521. self.s = shape # inference BCHW shape
  522. def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
  523. crops = []
  524. for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
  525. s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
  526. if pred.shape[0]:
  527. for c in pred[:, -1].unique():
  528. n = (pred[:, -1] == c).sum() # detections per class
  529. s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
  530. if show or save or render or crop:
  531. annotator = Annotator(im, example=str(self.names))
  532. for *box, conf, cls in reversed(pred): # xyxy, confidence, class
  533. label = f'{self.names[int(cls)]} {conf:.2f}'
  534. if crop:
  535. file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
  536. crops.append({
  537. 'box': box,
  538. 'conf': conf,
  539. 'cls': cls,
  540. 'label': label,
  541. 'im': save_one_box(box, im, file=file, save=save)})
  542. else: # all others
  543. annotator.box_label(box, label if labels else '', color=colors(cls))
  544. im = annotator.im
  545. else:
  546. s += '(no detections)'
  547. im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
  548. if pprint:
  549. LOGGER.info(s.rstrip(', '))
  550. if show:
  551. im.show(self.files[i]) # show
  552. if save:
  553. f = self.files[i]
  554. im.save(save_dir / f) # save
  555. if i == self.n - 1:
  556. LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
  557. if render:
  558. self.imgs[i] = np.asarray(im)
  559. if crop:
  560. if save:
  561. LOGGER.info(f'Saved results to {save_dir}\n')
  562. return crops
  563. def print(self):
  564. self.display(pprint=True) # print results
  565. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
  566. self.t)
  567. def show(self, labels=True):
  568. self.display(show=True, labels=labels) # show results
  569. def save(self, labels=True, save_dir='runs/detect/exp'):
  570. save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
  571. self.display(save=True, labels=labels, save_dir=save_dir) # save results
  572. def crop(self, save=True, save_dir='runs/detect/exp'):
  573. save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
  574. return self.display(crop=True, save=save, save_dir=save_dir) # crop results
  575. def render(self, labels=True):
  576. self.display(render=True, labels=labels) # render results
  577. return self.imgs
  578. def pandas(self):
  579. # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
  580. new = copy(self) # return copy
  581. ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
  582. cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
  583. for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
  584. a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
  585. setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
  586. return new
  587. def tolist(self):
  588. # return a list of Detections objects, i.e. 'for result in results.tolist():'
  589. r = range(self.n) # iterable
  590. x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
  591. # for d in x:
  592. # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
  593. # setattr(d, k, getattr(d, k)[0]) # pop out of list
  594. return x
  595. def __len__(self):
  596. return self.n
  597. class Classify(nn.Module):
  598. # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
  599. def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
  600. super().__init__()
  601. self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
  602. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
  603. self.flat = nn.Flatten()
  604. def forward(self, x):
  605. z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
  606. return self.flat(self.conv(z)) # flatten to x(b,c2)