|
- """File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
-
- Usage:
- import torch
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
- """
-
- dependencies = ['torch', 'yaml']
- import os
-
- import torch
-
- from models.yolo import Model
- from utils.general import set_logging
- from utils.google_utils import attempt_download
-
- set_logging()
-
-
- def create(name, pretrained, channels, classes):
- """Creates a specified YOLOv5 model
-
- Arguments:
- name (str): name of model, i.e. 'yolov5s'
- pretrained (bool): load pretrained weights into the model
- channels (int): number of input channels
- classes (int): number of model classes
-
- Returns:
- pytorch model
- """
- config = os.path.join(os.path.dirname(__file__), 'models', f'{name}.yaml') # model.yaml path
- try:
- model = Model(config, channels, classes)
- if pretrained:
- fname = f'{name}.pt' # checkpoint filename
- attempt_download(fname) # download if not found locally
- ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
- state_dict = ckpt['model'].float().state_dict() # to FP32
- state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
- model.load_state_dict(state_dict, strict=False) # load
- if len(ckpt['model'].names) == classes:
- model.names = ckpt['model'].names # set class names attribute
- # model = model.autoshape() # for autoshaping of PIL/cv2/np inputs and NMS
- return model
-
- except Exception as e:
- help_url = 'https://github.com/ultralytics/yolov5/issues/36'
- s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
- raise Exception(s) from e
-
-
- def yolov5s(pretrained=False, channels=3, classes=80):
- """YOLOv5-small model from https://github.com/ultralytics/yolov5
-
- Arguments:
- pretrained (bool): load pretrained weights into the model, default=False
- channels (int): number of input channels, default=3
- classes (int): number of model classes, default=80
-
- Returns:
- pytorch model
- """
- return create('yolov5s', pretrained, channels, classes)
-
-
- def yolov5m(pretrained=False, channels=3, classes=80):
- """YOLOv5-medium model from https://github.com/ultralytics/yolov5
-
- Arguments:
- pretrained (bool): load pretrained weights into the model, default=False
- channels (int): number of input channels, default=3
- classes (int): number of model classes, default=80
-
- Returns:
- pytorch model
- """
- return create('yolov5m', pretrained, channels, classes)
-
-
- def yolov5l(pretrained=False, channels=3, classes=80):
- """YOLOv5-large model from https://github.com/ultralytics/yolov5
-
- Arguments:
- pretrained (bool): load pretrained weights into the model, default=False
- channels (int): number of input channels, default=3
- classes (int): number of model classes, default=80
-
- Returns:
- pytorch model
- """
- return create('yolov5l', pretrained, channels, classes)
-
-
- def yolov5x(pretrained=False, channels=3, classes=80):
- """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
-
- Arguments:
- pretrained (bool): load pretrained weights into the model, default=False
- channels (int): number of input channels, default=3
- classes (int): number of model classes, default=80
-
- Returns:
- pytorch model
- """
- return create('yolov5x', pretrained, channels, classes)
-
-
- if __name__ == '__main__':
- model = create(name='yolov5s', pretrained=True, channels=3, classes=80) # example
- model = model.fuse().eval().autoshape() # for autoshaping of PIL/cv2/np inputs and NMS
-
- # Verify inference
- from PIL import Image
-
- img = Image.open('inference/images/zidane.jpg')
- y = model(img)
- print(y[0].shape)
|