選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

537 行
27KB

  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import shutil
  7. import time
  8. from pathlib import Path
  9. import numpy as np
  10. import torch.distributed as dist
  11. import torch.nn.functional as F
  12. import torch.optim as optim
  13. import torch.optim.lr_scheduler as lr_scheduler
  14. import torch.utils.data
  15. import yaml
  16. from torch.cuda import amp
  17. from torch.nn.parallel import DistributedDataParallel as DDP
  18. from torch.utils.tensorboard import SummaryWriter
  19. from tqdm import tqdm
  20. import test # import test.py to get mAP after each epoch
  21. from models.yolo import Model
  22. from utils.datasets import create_dataloader
  23. from utils.general import (
  24. torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,
  25. compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,
  26. check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging, init_seeds)
  27. from utils.google_utils import attempt_download
  28. from utils.torch_utils import ModelEMA, select_device, intersect_dicts
  29. logger = logging.getLogger(__name__)
  30. def train(hyp, opt, device, tb_writer=None):
  31. logger.info(f'Hyperparameters {hyp}')
  32. log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
  33. wdir = log_dir / 'weights' # weights directory
  34. os.makedirs(wdir, exist_ok=True)
  35. last = wdir / 'last.pt'
  36. best = wdir / 'best.pt'
  37. results_file = str(log_dir / 'results.txt')
  38. epochs, batch_size, total_batch_size, weights, rank = \
  39. opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
  40. # Save run settings
  41. with open(log_dir / 'hyp.yaml', 'w') as f:
  42. yaml.dump(hyp, f, sort_keys=False)
  43. with open(log_dir / 'opt.yaml', 'w') as f:
  44. yaml.dump(vars(opt), f, sort_keys=False)
  45. # Configure
  46. cuda = device.type != 'cpu'
  47. init_seeds(2 + rank)
  48. with open(opt.data) as f:
  49. data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
  50. with torch_distributed_zero_first(rank):
  51. check_dataset(data_dict) # check
  52. train_path = data_dict['train']
  53. test_path = data_dict['val']
  54. nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
  55. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  56. # Model
  57. pretrained = weights.endswith('.pt')
  58. if pretrained:
  59. with torch_distributed_zero_first(rank):
  60. attempt_download(weights) # download if not found locally
  61. ckpt = torch.load(weights, map_location=device) # load checkpoint
  62. if hyp.get('anchors'):
  63. ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
  64. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
  65. exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys
  66. state_dict = ckpt['model'].float().state_dict() # to FP32
  67. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  68. model.load_state_dict(state_dict, strict=False) # load
  69. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  70. else:
  71. model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
  72. # Freeze
  73. freeze = ['', ] # parameter names to freeze (full or partial)
  74. if any(freeze):
  75. for k, v in model.named_parameters():
  76. if any(x in k for x in freeze):
  77. print('freezing %s' % k)
  78. v.requires_grad = False
  79. # Optimizer
  80. nbs = 64 # nominal batch size
  81. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  82. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  83. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  84. for k, v in model.named_parameters():
  85. v.requires_grad = True
  86. if '.bias' in k:
  87. pg2.append(v) # biases
  88. elif '.weight' in k and '.bn' not in k:
  89. pg1.append(v) # apply weight decay
  90. else:
  91. pg0.append(v) # all else
  92. if opt.adam:
  93. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  94. else:
  95. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  96. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  97. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  98. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  99. del pg0, pg1, pg2
  100. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  101. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  102. lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
  103. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  104. # plot_lr_scheduler(optimizer, scheduler, epochs)
  105. # Resume
  106. start_epoch, best_fitness = 0, 0.0
  107. if pretrained:
  108. # Optimizer
  109. if ckpt['optimizer'] is not None:
  110. optimizer.load_state_dict(ckpt['optimizer'])
  111. best_fitness = ckpt['best_fitness']
  112. # Results
  113. if ckpt.get('training_results') is not None:
  114. with open(results_file, 'w') as file:
  115. file.write(ckpt['training_results']) # write results.txt
  116. # Epochs
  117. start_epoch = ckpt['epoch'] + 1
  118. if opt.resume:
  119. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  120. shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}') # save previous weights
  121. if epochs < start_epoch:
  122. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  123. (weights, ckpt['epoch'], epochs))
  124. epochs += ckpt['epoch'] # finetune additional epochs
  125. del ckpt, state_dict
  126. # Image sizes
  127. gs = int(max(model.stride)) # grid size (max stride)
  128. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  129. # DP mode
  130. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  131. model = torch.nn.DataParallel(model)
  132. # SyncBatchNorm
  133. if opt.sync_bn and cuda and rank != -1:
  134. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  135. logger.info('Using SyncBatchNorm()')
  136. # Exponential moving average
  137. ema = ModelEMA(model) if rank in [-1, 0] else None
  138. # DDP mode
  139. if cuda and rank != -1:
  140. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
  141. # Trainloader
  142. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
  143. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,
  144. rank=rank, world_size=opt.world_size, workers=opt.workers)
  145. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  146. nb = len(dataloader) # number of batches
  147. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  148. # Process 0
  149. if rank in [-1, 0]:
  150. ema.updates = start_epoch * nb // accumulate # set EMA updates
  151. testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
  152. hyp=hyp, augment=False, cache=opt.cache_images and not opt.notest, rect=True,
  153. rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader
  154. if not opt.resume:
  155. labels = np.concatenate(dataset.labels, 0)
  156. c = torch.tensor(labels[:, 0]) # classes
  157. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  158. # model._initialize_biases(cf.to(device))
  159. plot_labels(labels, save_dir=log_dir)
  160. if tb_writer:
  161. # tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
  162. tb_writer.add_histogram('classes', c, 0)
  163. # Anchors
  164. if not opt.noautoanchor:
  165. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  166. # Model parameters
  167. hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
  168. model.nc = nc # attach number of classes to model
  169. model.hyp = hyp # attach hyperparameters to model
  170. model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
  171. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
  172. model.names = names
  173. # Start training
  174. t0 = time.time()
  175. nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
  176. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  177. maps = np.zeros(nc) # mAP per class
  178. results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
  179. scheduler.last_epoch = start_epoch - 1 # do not move
  180. scaler = amp.GradScaler(enabled=cuda)
  181. logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n'
  182. 'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
  183. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  184. model.train()
  185. # Update image weights (optional)
  186. if opt.image_weights:
  187. # Generate indices
  188. if rank in [-1, 0]:
  189. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
  190. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  191. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  192. # Broadcast if DDP
  193. if rank != -1:
  194. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  195. dist.broadcast(indices, 0)
  196. if rank != 0:
  197. dataset.indices = indices.cpu().numpy()
  198. # Update mosaic border
  199. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  200. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  201. mloss = torch.zeros(4, device=device) # mean losses
  202. if rank != -1:
  203. dataloader.sampler.set_epoch(epoch)
  204. pbar = enumerate(dataloader)
  205. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
  206. if rank in [-1, 0]:
  207. pbar = tqdm(pbar, total=nb) # progress bar
  208. optimizer.zero_grad()
  209. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  210. ni = i + nb * epoch # number integrated batches (since train start)
  211. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  212. # Warmup
  213. if ni <= nw:
  214. xi = [0, nw] # x interp
  215. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
  216. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  217. for j, x in enumerate(optimizer.param_groups):
  218. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  219. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  220. if 'momentum' in x:
  221. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  222. # Multi-scale
  223. if opt.multi_scale:
  224. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  225. sf = sz / max(imgs.shape[2:]) # scale factor
  226. if sf != 1:
  227. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  228. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  229. # Forward
  230. with amp.autocast(enabled=cuda):
  231. pred = model(imgs) # forward
  232. loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
  233. if rank != -1:
  234. loss *= opt.world_size # gradient averaged between devices in DDP mode
  235. # Backward
  236. scaler.scale(loss).backward()
  237. # Optimize
  238. if ni % accumulate == 0:
  239. scaler.step(optimizer) # optimizer.step
  240. scaler.update()
  241. optimizer.zero_grad()
  242. if ema:
  243. ema.update(model)
  244. # Print
  245. if rank in [-1, 0]:
  246. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  247. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  248. s = ('%10s' * 2 + '%10.4g' * 6) % (
  249. '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
  250. pbar.set_description(s)
  251. # Plot
  252. if ni < 3:
  253. f = str(log_dir / ('train_batch%g.jpg' % ni)) # filename
  254. result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
  255. if tb_writer and result is not None:
  256. tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
  257. # tb_writer.add_graph(model, imgs) # add model to tensorboard
  258. # end batch ------------------------------------------------------------------------------------------------
  259. # Scheduler
  260. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  261. scheduler.step()
  262. # DDP process 0 or single-GPU
  263. if rank in [-1, 0]:
  264. # mAP
  265. if ema:
  266. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
  267. final_epoch = epoch + 1 == epochs
  268. if not opt.notest or final_epoch: # Calculate mAP
  269. results, maps, times = test.test(opt.data,
  270. batch_size=total_batch_size,
  271. imgsz=imgsz_test,
  272. model=ema.ema,
  273. single_cls=opt.single_cls,
  274. dataloader=testloader,
  275. save_dir=log_dir,
  276. plots=epoch == 0 or final_epoch) # plot first and last
  277. # Write
  278. with open(results_file, 'a') as f:
  279. f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
  280. if len(opt.name) and opt.bucket:
  281. os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
  282. # Tensorboard
  283. if tb_writer:
  284. tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  285. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  286. 'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  287. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  288. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  289. tb_writer.add_scalar(tag, x, epoch)
  290. # Update best mAP
  291. fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
  292. if fi > best_fitness:
  293. best_fitness = fi
  294. # Save model
  295. save = (not opt.nosave) or (final_epoch and not opt.evolve)
  296. if save:
  297. with open(results_file, 'r') as f: # create checkpoint
  298. ckpt = {'epoch': epoch,
  299. 'best_fitness': best_fitness,
  300. 'training_results': f.read(),
  301. 'model': ema.ema,
  302. 'optimizer': None if final_epoch else optimizer.state_dict()}
  303. # Save last, best and delete
  304. torch.save(ckpt, last)
  305. if best_fitness == fi:
  306. torch.save(ckpt, best)
  307. del ckpt
  308. # end epoch ----------------------------------------------------------------------------------------------------
  309. # end training
  310. if rank in [-1, 0]:
  311. # Strip optimizers
  312. n = opt.name if opt.name.isnumeric() else ''
  313. fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
  314. for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
  315. if os.path.exists(f1):
  316. os.rename(f1, f2) # rename
  317. if str(f2).endswith('.pt'): # is *.pt
  318. strip_optimizer(f2) # strip optimizer
  319. os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
  320. # Finish
  321. if not opt.evolve:
  322. plot_results(save_dir=log_dir) # save as results.png
  323. logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
  324. dist.destroy_process_group() if rank not in [-1, 0] else None
  325. torch.cuda.empty_cache()
  326. return results
  327. if __name__ == '__main__':
  328. parser = argparse.ArgumentParser()
  329. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  330. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  331. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
  332. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
  333. parser.add_argument('--epochs', type=int, default=300)
  334. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  335. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  336. parser.add_argument('--rect', action='store_true', help='rectangular training')
  337. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  338. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  339. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  340. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  341. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  342. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  343. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  344. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  345. parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
  346. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  347. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  348. parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
  349. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  350. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  351. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  352. parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')
  353. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  354. opt = parser.parse_args()
  355. # Set DDP variables
  356. opt.total_batch_size = opt.batch_size
  357. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  358. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  359. set_logging(opt.global_rank)
  360. if opt.global_rank in [-1, 0]:
  361. check_git_status()
  362. # Resume
  363. if opt.resume: # resume an interrupted run
  364. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  365. log_dir = Path(ckpt).parent.parent # runs/exp0
  366. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  367. with open(log_dir / 'opt.yaml') as f:
  368. opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
  369. opt.cfg, opt.weights, opt.resume = '', ckpt, True
  370. logger.info('Resuming training from %s' % ckpt)
  371. else:
  372. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  373. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  374. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  375. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  376. log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name) # runs/exp1
  377. device = select_device(opt.device, batch_size=opt.batch_size)
  378. # DDP mode
  379. if opt.local_rank != -1:
  380. assert torch.cuda.device_count() > opt.local_rank
  381. torch.cuda.set_device(opt.local_rank)
  382. device = torch.device('cuda', opt.local_rank)
  383. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  384. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  385. opt.batch_size = opt.total_batch_size // opt.world_size
  386. logger.info(opt)
  387. with open(opt.hyp) as f:
  388. hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
  389. # Train
  390. if not opt.evolve:
  391. tb_writer = None
  392. if opt.global_rank in [-1, 0]:
  393. logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
  394. tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0
  395. train(hyp, opt, device, tb_writer)
  396. # Evolve hyperparameters (optional)
  397. else:
  398. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  399. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  400. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  401. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  402. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  403. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  404. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  405. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  406. 'giou': (1, 0.02, 0.2), # GIoU loss gain
  407. 'cls': (1, 0.2, 4.0), # cls loss gain
  408. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  409. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  410. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  411. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  412. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  413. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  414. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  415. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  416. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  417. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  418. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  419. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  420. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  421. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  422. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  423. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  424. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  425. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  426. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  427. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  428. opt.notest, opt.nosave = True, True # only test/save final epoch
  429. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  430. yaml_file = Path('runs/evolve/hyp_evolved.yaml') # save best result here
  431. if opt.bucket:
  432. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  433. for _ in range(300): # generations to evolve
  434. if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
  435. # Select parent(s)
  436. parent = 'single' # parent selection method: 'single' or 'weighted'
  437. x = np.loadtxt('evolve.txt', ndmin=2)
  438. n = min(5, len(x)) # number of previous results to consider
  439. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  440. w = fitness(x) - fitness(x).min() # weights
  441. if parent == 'single' or len(x) == 1:
  442. # x = x[random.randint(0, n - 1)] # random selection
  443. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  444. elif parent == 'weighted':
  445. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  446. # Mutate
  447. mp, s = 0.8, 0.2 # mutation probability, sigma
  448. npr = np.random
  449. npr.seed(int(time.time()))
  450. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  451. ng = len(meta)
  452. v = np.ones(ng)
  453. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  454. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  455. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  456. hyp[k] = float(x[i + 7] * v[i]) # mutate
  457. # Constrain to limits
  458. for k, v in meta.items():
  459. hyp[k] = max(hyp[k], v[1]) # lower limit
  460. hyp[k] = min(hyp[k], v[2]) # upper limit
  461. hyp[k] = round(hyp[k], 5) # significant digits
  462. # Train mutation
  463. results = train(hyp.copy(), opt, device)
  464. # Write mutation results
  465. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  466. # Plot results
  467. plot_evolution(yaml_file)
  468. print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
  469. 'hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))