|
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Export a YOLOv5 PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
- TensorFlow exports authored by https://github.com/zldrobit
-
- Usage:
- $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml saved_model pb tflite tfjs
-
- Inference:
- $ python path/to/detect.py --weights yolov5s.pt
- yolov5s.onnx (must export with --dynamic)
- yolov5s_saved_model
- yolov5s.pb
- yolov5s.tflite
-
- TensorFlow.js:
- $ # Edit yolov5s_web_model/model.json to sort Identity* in ascending order
- $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
- $ npm install
- $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
- $ npm start
- """
-
- import argparse
- import subprocess
- import sys
- import time
- from pathlib import Path
-
- import torch
- import torch.nn as nn
- from torch.utils.mobile_optimizer import optimize_for_mobile
-
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
-
- from models.common import Conv
- from models.experimental import attempt_load
- from models.yolo import Detect
- from utils.activations import SiLU
- from utils.datasets import LoadImages
- from utils.general import colorstr, check_dataset, check_img_size, check_requirements, file_size, print_args, \
- set_logging, url2file
- from utils.torch_utils import select_device
-
-
- def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
- # YOLOv5 TorchScript model export
- try:
- print(f'\n{prefix} starting export with torch {torch.__version__}...')
- f = file.with_suffix('.torchscript.pt')
-
- ts = torch.jit.trace(model, im, strict=False)
- (optimize_for_mobile(ts) if optimize else ts).save(f)
-
- print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- except Exception as e:
- print(f'{prefix} export failure: {e}')
-
-
- def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
- # YOLOv5 ONNX export
- try:
- check_requirements(('onnx',))
- import onnx
-
- print(f'\n{prefix} starting export with onnx {onnx.__version__}...')
- f = file.with_suffix('.onnx')
-
- torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
- training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
- do_constant_folding=not train,
- input_names=['images'],
- output_names=['output'],
- dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
- 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
- } if dynamic else None)
-
- # Checks
- model_onnx = onnx.load(f) # load onnx model
- onnx.checker.check_model(model_onnx) # check onnx model
- # print(onnx.helper.printable_graph(model_onnx.graph)) # print
-
- # Simplify
- if simplify:
- try:
- check_requirements(('onnx-simplifier',))
- import onnxsim
-
- print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
- model_onnx, check = onnxsim.simplify(
- model_onnx,
- dynamic_input_shape=dynamic,
- input_shapes={'images': list(im.shape)} if dynamic else None)
- assert check, 'assert check failed'
- onnx.save(model_onnx, f)
- except Exception as e:
- print(f'{prefix} simplifier failure: {e}')
- print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- print(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
- except Exception as e:
- print(f'{prefix} export failure: {e}')
-
-
- def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
- # YOLOv5 CoreML export
- ct_model = None
- try:
- check_requirements(('coremltools',))
- import coremltools as ct
-
- print(f'\n{prefix} starting export with coremltools {ct.__version__}...')
- f = file.with_suffix('.mlmodel')
-
- model.train() # CoreML exports should be placed in model.train() mode
- ts = torch.jit.trace(model, im, strict=False) # TorchScript model
- ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255.0, bias=[0, 0, 0])])
- ct_model.save(f)
-
- print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- except Exception as e:
- print(f'\n{prefix} export failure: {e}')
-
- return ct_model
-
-
- def export_saved_model(model, im, file, dynamic,
- tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
- conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
- # YOLOv5 TensorFlow saved_model export
- keras_model = None
- try:
- import tensorflow as tf
- from tensorflow import keras
- from models.tf import TFModel, TFDetect
-
- print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
- f = str(file).replace('.pt', '_saved_model')
- batch_size, ch, *imgsz = list(im.shape) # BCHW
-
- tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
- im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
- y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
- inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
- outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
- keras_model = keras.Model(inputs=inputs, outputs=outputs)
- keras_model.trainable = False
- keras_model.summary()
- keras_model.save(f, save_format='tf')
-
- print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- except Exception as e:
- print(f'\n{prefix} export failure: {e}')
-
- return keras_model
-
-
- def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
- # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
- try:
- import tensorflow as tf
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
-
- print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
- f = file.with_suffix('.pb')
-
- m = tf.function(lambda x: keras_model(x)) # full model
- m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
- frozen_func = convert_variables_to_constants_v2(m)
- frozen_func.graph.as_graph_def()
- tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
-
- print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- except Exception as e:
- print(f'\n{prefix} export failure: {e}')
-
-
- def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
- # YOLOv5 TensorFlow Lite export
- try:
- import tensorflow as tf
- from models.tf import representative_dataset_gen
-
- print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
- batch_size, ch, *imgsz = list(im.shape) # BCHW
- f = str(file).replace('.pt', '-fp16.tflite')
-
- converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
- converter.target_spec.supported_types = [tf.float16]
- converter.optimizations = [tf.lite.Optimize.DEFAULT]
- if int8:
- dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
- converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
- converter.target_spec.supported_types = []
- converter.inference_input_type = tf.uint8 # or tf.int8
- converter.inference_output_type = tf.uint8 # or tf.int8
- converter.experimental_new_quantizer = False
- f = str(file).replace('.pt', '-int8.tflite')
-
- tflite_model = converter.convert()
- open(f, "wb").write(tflite_model)
- print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-
- except Exception as e:
- print(f'\n{prefix} export failure: {e}')
-
-
- def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
- # YOLOv5 TensorFlow.js export
- try:
- check_requirements(('tensorflowjs',))
- import tensorflowjs as tfjs
-
- print(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
- f = str(file).replace('.pt', '_web_model') # js dir
- f_pb = file.with_suffix('.pb') # *.pb path
-
- cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
- f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
- subprocess.run(cmd, shell=True)
-
- print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- except Exception as e:
- print(f'\n{prefix} export failure: {e}')
-
-
- @torch.no_grad()
- def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
- weights=ROOT / 'yolov5s.pt', # weights path
- imgsz=(640, 640), # image (height, width)
- batch_size=1, # batch size
- device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- include=('torchscript', 'onnx', 'coreml'), # include formats
- half=False, # FP16 half-precision export
- inplace=False, # set YOLOv5 Detect() inplace=True
- train=False, # model.train() mode
- optimize=False, # TorchScript: optimize for mobile
- int8=False, # CoreML/TF INT8 quantization
- dynamic=False, # ONNX/TF: dynamic axes
- simplify=False, # ONNX: simplify model
- opset=12, # ONNX: opset version
- ):
- t = time.time()
- include = [x.lower() for x in include]
- tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
- imgsz *= 2 if len(imgsz) == 1 else 1 # expand
- file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)
-
- # Load PyTorch model
- device = select_device(device)
- assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
- model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
- nc, names = model.nc, model.names # number of classes, class names
-
- # Input
- gs = int(max(model.stride)) # grid size (max stride)
- imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
- im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
-
- # Update model
- if half:
- im, model = im.half(), model.half() # to FP16
- model.train() if train else model.eval() # training mode = no Detect() layer grid construction
- for k, m in model.named_modules():
- if isinstance(m, Conv): # assign export-friendly activations
- if isinstance(m.act, nn.SiLU):
- m.act = SiLU()
- elif isinstance(m, Detect):
- m.inplace = inplace
- m.onnx_dynamic = dynamic
- # m.forward = m.forward_export # assign forward (optional)
-
- for _ in range(2):
- y = model(im) # dry runs
- print(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")
-
- # Exports
- if 'torchscript' in include:
- export_torchscript(model, im, file, optimize)
- if 'onnx' in include:
- export_onnx(model, im, file, opset, train, dynamic, simplify)
- if 'coreml' in include:
- export_coreml(model, im, file)
-
- # TensorFlow Exports
- if any(tf_exports):
- pb, tflite, tfjs = tf_exports[1:]
- assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
- model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs) # keras model
- if pb or tfjs: # pb prerequisite to tfjs
- export_pb(model, im, file)
- if tflite:
- export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
- if tfjs:
- export_tfjs(model, im, file)
-
- # Finish
- print(f'\nExport complete ({time.time() - t:.2f}s)'
- f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
- f'\nVisualize with https://netron.app')
-
-
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
- parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
- parser.add_argument('--train', action='store_true', help='model.train() mode')
- parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
- parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
- parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
- parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
- parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
- parser.add_argument('--include', nargs='+',
- default=['torchscript', 'onnx'],
- help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
- opt = parser.parse_args()
- print_args(FILE.stem, opt)
- return opt
-
-
- def main(opt):
- set_logging()
- run(**vars(opt))
-
-
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|