您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

615 行
31KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Train a YOLOv5 model on a custom dataset
  4. Usage:
  5. $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
  6. """
  7. import argparse
  8. import logging
  9. import math
  10. import os
  11. import random
  12. import sys
  13. import time
  14. from copy import deepcopy
  15. from pathlib import Path
  16. import numpy as np
  17. import torch
  18. import torch.distributed as dist
  19. import torch.nn as nn
  20. import yaml
  21. from torch.cuda import amp
  22. from torch.nn.parallel import DistributedDataParallel as DDP
  23. from torch.optim import Adam, SGD, lr_scheduler
  24. from tqdm import tqdm
  25. FILE = Path(__file__).resolve()
  26. ROOT = FILE.parents[0] # YOLOv5 root directory
  27. if str(ROOT) not in sys.path:
  28. sys.path.append(str(ROOT)) # add ROOT to PATH
  29. import val # for end-of-epoch mAP
  30. from models.experimental import attempt_load
  31. from models.yolo import Model
  32. from utils.autoanchor import check_anchors
  33. from utils.datasets import create_dataloader
  34. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  35. strip_optimizer, get_latest_run, check_dataset, check_git_status, check_img_size, check_requirements, \
  36. check_file, check_yaml, check_suffix, print_args, print_mutation, set_logging, one_cycle, colorstr, methods
  37. from utils.downloads import attempt_download
  38. from utils.loss import ComputeLoss
  39. from utils.plots import plot_labels, plot_evolve
  40. from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, intersect_dicts, select_device, \
  41. torch_distributed_zero_first
  42. from utils.loggers.wandb.wandb_utils import check_wandb_resume
  43. from utils.metrics import fitness
  44. from utils.loggers import Loggers
  45. from utils.callbacks import Callbacks
  46. LOGGER = logging.getLogger(__name__)
  47. LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
  48. RANK = int(os.getenv('RANK', -1))
  49. WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
  50. def train(hyp, # path/to/hyp.yaml or hyp dictionary
  51. opt,
  52. device,
  53. callbacks
  54. ):
  55. save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, = \
  56. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
  57. opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
  58. # Directories
  59. w = save_dir / 'weights' # weights dir
  60. (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
  61. last, best = w / 'last.pt', w / 'best.pt'
  62. # Hyperparameters
  63. if isinstance(hyp, str):
  64. with open(hyp) as f:
  65. hyp = yaml.safe_load(f) # load hyps dict
  66. LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  67. # Save run settings
  68. with open(save_dir / 'hyp.yaml', 'w') as f:
  69. yaml.safe_dump(hyp, f, sort_keys=False)
  70. with open(save_dir / 'opt.yaml', 'w') as f:
  71. yaml.safe_dump(vars(opt), f, sort_keys=False)
  72. data_dict = None
  73. # Loggers
  74. if RANK in [-1, 0]:
  75. loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
  76. if loggers.wandb:
  77. data_dict = loggers.wandb.data_dict
  78. if resume:
  79. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
  80. # Register actions
  81. for k in methods(loggers):
  82. callbacks.register_action(k, callback=getattr(loggers, k))
  83. # Config
  84. plots = not evolve # create plots
  85. cuda = device.type != 'cpu'
  86. init_seeds(1 + RANK)
  87. with torch_distributed_zero_first(RANK):
  88. data_dict = data_dict or check_dataset(data) # check if None
  89. train_path, val_path = data_dict['train'], data_dict['val']
  90. nc = 1 if single_cls else int(data_dict['nc']) # number of classes
  91. names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  92. assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
  93. is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
  94. # Model
  95. check_suffix(weights, '.pt') # check weights
  96. pretrained = weights.endswith('.pt')
  97. if pretrained:
  98. with torch_distributed_zero_first(RANK):
  99. weights = attempt_download(weights) # download if not found locally
  100. ckpt = torch.load(weights, map_location=device) # load checkpoint
  101. model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  102. exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
  103. csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
  104. csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
  105. model.load_state_dict(csd, strict=False) # load
  106. LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
  107. else:
  108. model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  109. # Freeze
  110. freeze = [f'model.{x}.' for x in range(freeze)] # layers to freeze
  111. for k, v in model.named_parameters():
  112. v.requires_grad = True # train all layers
  113. if any(x in k for x in freeze):
  114. print(f'freezing {k}')
  115. v.requires_grad = False
  116. # Optimizer
  117. nbs = 64 # nominal batch size
  118. accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
  119. hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
  120. LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  121. g0, g1, g2 = [], [], [] # optimizer parameter groups
  122. for v in model.modules():
  123. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
  124. g2.append(v.bias)
  125. if isinstance(v, nn.BatchNorm2d): # weight (no decay)
  126. g0.append(v.weight)
  127. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
  128. g1.append(v.weight)
  129. if opt.adam:
  130. optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  131. else:
  132. optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  133. optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
  134. optimizer.add_param_group({'params': g2}) # add g2 (biases)
  135. LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
  136. f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
  137. del g0, g1, g2
  138. # Scheduler
  139. if opt.linear_lr:
  140. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  141. else:
  142. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  143. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
  144. # EMA
  145. ema = ModelEMA(model) if RANK in [-1, 0] else None
  146. # Resume
  147. start_epoch, best_fitness = 0, 0.0
  148. if pretrained:
  149. # Optimizer
  150. if ckpt['optimizer'] is not None:
  151. optimizer.load_state_dict(ckpt['optimizer'])
  152. best_fitness = ckpt['best_fitness']
  153. # EMA
  154. if ema and ckpt.get('ema'):
  155. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  156. ema.updates = ckpt['updates']
  157. # Epochs
  158. start_epoch = ckpt['epoch'] + 1
  159. if resume:
  160. assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
  161. if epochs < start_epoch:
  162. LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
  163. epochs += ckpt['epoch'] # finetune additional epochs
  164. del ckpt, csd
  165. # Image sizes
  166. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  167. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  168. imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
  169. # DP mode
  170. if cuda and RANK == -1 and torch.cuda.device_count() > 1:
  171. logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
  172. 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
  173. model = torch.nn.DataParallel(model)
  174. # SyncBatchNorm
  175. if opt.sync_bn and cuda and RANK != -1:
  176. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  177. LOGGER.info('Using SyncBatchNorm()')
  178. # Trainloader
  179. train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
  180. hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=RANK,
  181. workers=workers, image_weights=opt.image_weights, quad=opt.quad,
  182. prefix=colorstr('train: '))
  183. mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
  184. nb = len(train_loader) # number of batches
  185. assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
  186. # Process 0
  187. if RANK in [-1, 0]:
  188. val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
  189. hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1,
  190. workers=workers, pad=0.5,
  191. prefix=colorstr('val: '))[0]
  192. if not resume:
  193. labels = np.concatenate(dataset.labels, 0)
  194. # c = torch.tensor(labels[:, 0]) # classes
  195. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  196. # model._initialize_biases(cf.to(device))
  197. if plots:
  198. plot_labels(labels, names, save_dir)
  199. # Anchors
  200. if not opt.noautoanchor:
  201. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  202. model.half().float() # pre-reduce anchor precision
  203. callbacks.run('on_pretrain_routine_end')
  204. # DDP mode
  205. if cuda and RANK != -1:
  206. model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
  207. # Model parameters
  208. hyp['box'] *= 3. / nl # scale to layers
  209. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  210. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  211. hyp['label_smoothing'] = opt.label_smoothing
  212. model.nc = nc # attach number of classes to model
  213. model.hyp = hyp # attach hyperparameters to model
  214. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  215. model.names = names
  216. # Start training
  217. t0 = time.time()
  218. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  219. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  220. last_opt_step = -1
  221. maps = np.zeros(nc) # mAP per class
  222. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  223. scheduler.last_epoch = start_epoch - 1 # do not move
  224. scaler = amp.GradScaler(enabled=cuda)
  225. stopper = EarlyStopping(patience=opt.patience)
  226. compute_loss = ComputeLoss(model) # init loss class
  227. LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
  228. f'Using {train_loader.num_workers} dataloader workers\n'
  229. f"Logging results to {colorstr('bold', save_dir)}\n"
  230. f'Starting training for {epochs} epochs...')
  231. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  232. model.train()
  233. # Update image weights (optional, single-GPU only)
  234. if opt.image_weights:
  235. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  236. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  237. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  238. # Update mosaic border (optional)
  239. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  240. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  241. mloss = torch.zeros(3, device=device) # mean losses
  242. if RANK != -1:
  243. train_loader.sampler.set_epoch(epoch)
  244. pbar = enumerate(train_loader)
  245. LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
  246. if RANK in [-1, 0]:
  247. pbar = tqdm(pbar, total=nb) # progress bar
  248. optimizer.zero_grad()
  249. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  250. ni = i + nb * epoch # number integrated batches (since train start)
  251. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  252. # Warmup
  253. if ni <= nw:
  254. xi = [0, nw] # x interp
  255. # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  256. accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
  257. for j, x in enumerate(optimizer.param_groups):
  258. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  259. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  260. if 'momentum' in x:
  261. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  262. # Multi-scale
  263. if opt.multi_scale:
  264. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  265. sf = sz / max(imgs.shape[2:]) # scale factor
  266. if sf != 1:
  267. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  268. imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  269. # Forward
  270. with amp.autocast(enabled=cuda):
  271. pred = model(imgs) # forward
  272. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  273. if RANK != -1:
  274. loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
  275. if opt.quad:
  276. loss *= 4.
  277. # Backward
  278. scaler.scale(loss).backward()
  279. # Optimize
  280. if ni - last_opt_step >= accumulate:
  281. scaler.step(optimizer) # optimizer.step
  282. scaler.update()
  283. optimizer.zero_grad()
  284. if ema:
  285. ema.update(model)
  286. last_opt_step = ni
  287. # Log
  288. if RANK in [-1, 0]:
  289. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  290. mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
  291. pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
  292. f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
  293. callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
  294. # end batch ------------------------------------------------------------------------------------------------
  295. # Scheduler
  296. lr = [x['lr'] for x in optimizer.param_groups] # for loggers
  297. scheduler.step()
  298. if RANK in [-1, 0]:
  299. # mAP
  300. callbacks.run('on_train_epoch_end', epoch=epoch)
  301. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
  302. final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
  303. if not noval or final_epoch: # Calculate mAP
  304. results, maps, _ = val.run(data_dict,
  305. batch_size=batch_size // WORLD_SIZE * 2,
  306. imgsz=imgsz,
  307. model=ema.ema,
  308. single_cls=single_cls,
  309. dataloader=val_loader,
  310. save_dir=save_dir,
  311. save_json=is_coco and final_epoch,
  312. verbose=nc < 50 and final_epoch,
  313. plots=plots and final_epoch,
  314. callbacks=callbacks,
  315. compute_loss=compute_loss)
  316. # Update best mAP
  317. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  318. if fi > best_fitness:
  319. best_fitness = fi
  320. log_vals = list(mloss) + list(results) + lr
  321. callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
  322. # Save model
  323. if (not nosave) or (final_epoch and not evolve): # if save
  324. ckpt = {'epoch': epoch,
  325. 'best_fitness': best_fitness,
  326. 'model': deepcopy(de_parallel(model)).half(),
  327. 'ema': deepcopy(ema.ema).half(),
  328. 'updates': ema.updates,
  329. 'optimizer': optimizer.state_dict(),
  330. 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None}
  331. # Save last, best and delete
  332. torch.save(ckpt, last)
  333. if best_fitness == fi:
  334. torch.save(ckpt, best)
  335. del ckpt
  336. callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
  337. # Stop Single-GPU
  338. if RANK == -1 and stopper(epoch=epoch, fitness=fi):
  339. break
  340. # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
  341. # stop = stopper(epoch=epoch, fitness=fi)
  342. # if RANK == 0:
  343. # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
  344. # Stop DPP
  345. # with torch_distributed_zero_first(RANK):
  346. # if stop:
  347. # break # must break all DDP ranks
  348. # end epoch ----------------------------------------------------------------------------------------------------
  349. # end training -----------------------------------------------------------------------------------------------------
  350. if RANK in [-1, 0]:
  351. LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
  352. if not evolve:
  353. if is_coco: # COCO dataset
  354. for m in [last, best] if best.exists() else [last]: # speed, mAP tests
  355. results, _, _ = val.run(data_dict,
  356. batch_size=batch_size // WORLD_SIZE * 2,
  357. imgsz=imgsz,
  358. model=attempt_load(m, device).half(),
  359. iou_thres=0.7, # NMS IoU threshold for best pycocotools results
  360. single_cls=single_cls,
  361. dataloader=val_loader,
  362. save_dir=save_dir,
  363. save_json=True,
  364. plots=False)
  365. # Strip optimizers
  366. for f in last, best:
  367. if f.exists():
  368. strip_optimizer(f) # strip optimizers
  369. callbacks.run('on_train_end', last, best, plots, epoch)
  370. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
  371. torch.cuda.empty_cache()
  372. return results
  373. def parse_opt(known=False):
  374. parser = argparse.ArgumentParser()
  375. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  376. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  377. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  378. parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
  379. parser.add_argument('--epochs', type=int, default=300)
  380. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  381. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
  382. parser.add_argument('--rect', action='store_true', help='rectangular training')
  383. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  384. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  385. parser.add_argument('--noval', action='store_true', help='only validate final epoch')
  386. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  387. parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
  388. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  389. parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
  390. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  391. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  392. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  393. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  394. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  395. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  396. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  397. parser.add_argument('--project', default='runs/train', help='save to project/name')
  398. parser.add_argument('--entity', default=None, help='W&B entity')
  399. parser.add_argument('--name', default='exp', help='save to project/name')
  400. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  401. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  402. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  403. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  404. parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
  405. parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
  406. parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
  407. parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
  408. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  409. parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
  410. parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
  411. opt = parser.parse_known_args()[0] if known else parser.parse_args()
  412. return opt
  413. def main(opt, callbacks=Callbacks()):
  414. # Checks
  415. set_logging(RANK)
  416. if RANK in [-1, 0]:
  417. print_args(FILE.stem, opt)
  418. check_git_status()
  419. check_requirements(exclude=['thop'])
  420. # Resume
  421. if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run
  422. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  423. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  424. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  425. opt = argparse.Namespace(**yaml.safe_load(f)) # replace
  426. opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
  427. LOGGER.info(f'Resuming training from {ckpt}')
  428. else:
  429. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp) # check YAMLs
  430. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  431. if opt.evolve:
  432. opt.project = 'runs/evolve'
  433. opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
  434. opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
  435. # DDP mode
  436. device = select_device(opt.device, batch_size=opt.batch_size)
  437. if LOCAL_RANK != -1:
  438. from datetime import timedelta
  439. assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
  440. assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
  441. assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
  442. assert not opt.evolve, '--evolve argument is not compatible with DDP training'
  443. torch.cuda.set_device(LOCAL_RANK)
  444. device = torch.device('cuda', LOCAL_RANK)
  445. dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
  446. # Train
  447. if not opt.evolve:
  448. train(opt.hyp, opt, device, callbacks)
  449. if WORLD_SIZE > 1 and RANK == 0:
  450. LOGGER.info('Destroying process group... ')
  451. dist.destroy_process_group()
  452. # Evolve hyperparameters (optional)
  453. else:
  454. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  455. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  456. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  457. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  458. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  459. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  460. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  461. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  462. 'box': (1, 0.02, 0.2), # box loss gain
  463. 'cls': (1, 0.2, 4.0), # cls loss gain
  464. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  465. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  466. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  467. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  468. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  469. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  470. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  471. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  472. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  473. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  474. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  475. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  476. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  477. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  478. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  479. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  480. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  481. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  482. 'mixup': (1, 0.0, 1.0), # image mixup (probability)
  483. 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
  484. with open(opt.hyp) as f:
  485. hyp = yaml.safe_load(f) # load hyps dict
  486. if 'anchors' not in hyp: # anchors commented in hyp.yaml
  487. hyp['anchors'] = 3
  488. opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
  489. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  490. evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
  491. if opt.bucket:
  492. os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}') # download evolve.csv if exists
  493. for _ in range(opt.evolve): # generations to evolve
  494. if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
  495. # Select parent(s)
  496. parent = 'single' # parent selection method: 'single' or 'weighted'
  497. x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
  498. n = min(5, len(x)) # number of previous results to consider
  499. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  500. w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
  501. if parent == 'single' or len(x) == 1:
  502. # x = x[random.randint(0, n - 1)] # random selection
  503. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  504. elif parent == 'weighted':
  505. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  506. # Mutate
  507. mp, s = 0.8, 0.2 # mutation probability, sigma
  508. npr = np.random
  509. npr.seed(int(time.time()))
  510. g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
  511. ng = len(meta)
  512. v = np.ones(ng)
  513. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  514. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  515. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  516. hyp[k] = float(x[i + 7] * v[i]) # mutate
  517. # Constrain to limits
  518. for k, v in meta.items():
  519. hyp[k] = max(hyp[k], v[1]) # lower limit
  520. hyp[k] = min(hyp[k], v[2]) # upper limit
  521. hyp[k] = round(hyp[k], 5) # significant digits
  522. # Train mutation
  523. results = train(hyp.copy(), opt, device, callbacks)
  524. # Write mutation results
  525. print_mutation(results, hyp.copy(), save_dir, opt.bucket)
  526. # Plot results
  527. plot_evolve(evolve_csv)
  528. print(f'Hyperparameter evolution finished\n'
  529. f"Results saved to {colorstr('bold', save_dir)}\n"
  530. f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')
  531. def run(**kwargs):
  532. # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
  533. opt = parse_opt(True)
  534. for k, v in kwargs.items():
  535. setattr(opt, k, v)
  536. main(opt)
  537. if __name__ == "__main__":
  538. opt = parse_opt()
  539. main(opt)