|
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- AutoAnchor utils
- """
-
- import random
-
- import numpy as np
- import torch
- import yaml
- from tqdm.auto import tqdm
-
- from utils.general import LOGGER, colorstr, emojis
-
- PREFIX = colorstr('AutoAnchor: ')
-
-
- def check_anchor_order(m):
- # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
- a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
- da = a[-1] - a[0] # delta a
- ds = m.stride[-1] - m.stride[0] # delta s
- if da and (da.sign() != ds.sign()): # same order
- LOGGER.info(f'{PREFIX}Reversing anchor order')
- m.anchors[:] = m.anchors.flip(0)
-
-
- def check_anchors(dataset, model, thr=4.0, imgsz=640):
- # Check anchor fit to data, recompute if necessary
- m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
- shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
- scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
- wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
-
- def metric(k): # compute metric
- r = wh[:, None] / k[None]
- x = torch.min(r, 1 / r).min(2)[0] # ratio metric
- best = x.max(1)[0] # best_x
- aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
- bpr = (best > 1 / thr).float().mean() # best possible recall
- return bpr, aat
-
- stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
- anchors = m.anchors.clone() * stride # current anchors
- bpr, aat = metric(anchors.cpu().view(-1, 2))
- s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
- if bpr > 0.98: # threshold to recompute
- LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
- else:
- LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
- na = m.anchors.numel() // 2 # number of anchors
- try:
- anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
- except Exception as e:
- LOGGER.info(f'{PREFIX}ERROR: {e}')
- new_bpr = metric(anchors)[0]
- if new_bpr > bpr: # replace anchors
- anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
- m.anchors[:] = anchors.clone().view_as(m.anchors)
- check_anchor_order(m) # must be in pixel-space (not grid-space)
- m.anchors /= stride
- s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
- else:
- s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
- LOGGER.info(emojis(s))
-
-
- def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
- """ Creates kmeans-evolved anchors from training dataset
-
- Arguments:
- dataset: path to data.yaml, or a loaded dataset
- n: number of anchors
- img_size: image size used for training
- thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
- gen: generations to evolve anchors using genetic algorithm
- verbose: print all results
-
- Return:
- k: kmeans evolved anchors
-
- Usage:
- from utils.autoanchor import *; _ = kmean_anchors()
- """
- from scipy.cluster.vq import kmeans
-
- npr = np.random
- thr = 1 / thr
-
- def metric(k, wh): # compute metrics
- r = wh[:, None] / k[None]
- x = torch.min(r, 1 / r).min(2)[0] # ratio metric
- # x = wh_iou(wh, torch.tensor(k)) # iou metric
- return x, x.max(1)[0] # x, best_x
-
- def anchor_fitness(k): # mutation fitness
- _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
- return (best * (best > thr).float()).mean() # fitness
-
- def print_results(k, verbose=True):
- k = k[np.argsort(k.prod(1))] # sort small to large
- x, best = metric(k, wh0)
- bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
- s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
- f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
- f'past_thr={x[x > thr].mean():.3f}-mean: '
- for i, x in enumerate(k):
- s += '%i,%i, ' % (round(x[0]), round(x[1]))
- if verbose:
- LOGGER.info(s[:-2])
- return k
-
- if isinstance(dataset, str): # *.yaml file
- with open(dataset, errors='ignore') as f:
- data_dict = yaml.safe_load(f) # model dict
- from utils.datasets import LoadImagesAndLabels
- dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
-
- # Get label wh
- shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
- wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
-
- # Filter
- i = (wh0 < 3.0).any(1).sum()
- if i:
- LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size')
- wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
- # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
-
- # Kmeans init
- try:
- LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
- assert n <= len(wh) # apply overdetermined constraint
- s = wh.std(0) # sigmas for whitening
- k = kmeans(wh / s, n, iter=30)[0] * s # points
- assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
- except Exception:
- LOGGER.warning(f'{PREFIX}WARNING: switching strategies from kmeans to random init')
- k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
- wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
- k = print_results(k, verbose=False)
-
- # Plot
- # k, d = [None] * 20, [None] * 20
- # for i in tqdm(range(1, 21)):
- # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
- # ax = ax.ravel()
- # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
- # ax[0].hist(wh[wh[:, 0]<100, 0],400)
- # ax[1].hist(wh[wh[:, 1]<100, 1],400)
- # fig.savefig('wh.png', dpi=200)
-
- # Evolve
- f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
- pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
- for _ in pbar:
- v = np.ones(sh)
- while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
- v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
- kg = (k.copy() * v).clip(min=2.0)
- fg = anchor_fitness(kg)
- if fg > f:
- f, k = fg, kg.copy()
- pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
- if verbose:
- print_results(k, verbose)
-
- return print_results(k)
|