|
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- TensorFlow/Keras and TFLite versions of YOLOv5
- Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
-
- Usage:
- $ python models/tf.py --weights yolov5s.pt --cfg yolov5s.yaml
-
- Export int8 TFLite models:
- $ python models/tf.py --weights yolov5s.pt --cfg models/yolov5s.yaml --tfl-int8 \
- --source path/to/images/ --ncalib 100
-
- Detection:
- $ python detect.py --weights yolov5s.pb --img 320
- $ python detect.py --weights yolov5s_saved_model --img 320
- $ python detect.py --weights yolov5s-fp16.tflite --img 320
- $ python detect.py --weights yolov5s-int8.tflite --img 320 --tfl-int8
-
- For TensorFlow.js:
- $ python models/tf.py --weights yolov5s.pt --cfg models/yolov5s.yaml --img 320 --tf-nms --agnostic-nms
- $ pip install tensorflowjs
- $ tensorflowjs_converter \
- --input_format=tf_frozen_model \
- --output_node_names='Identity,Identity_1,Identity_2,Identity_3' \
- yolov5s.pb \
- web_model
- $ # Edit web_model/model.json to sort Identity* in ascending order
- $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
- $ npm install
- $ ln -s ../../yolov5/web_model public/web_model
- $ npm start
- """
-
- import argparse
- import logging
- import os
- import sys
- import traceback
- from copy import deepcopy
- from pathlib import Path
-
- sys.path.append('./') # to run '$ python *.py' files in subdirectories
-
- import numpy as np
- import tensorflow as tf
- import torch
- import torch.nn as nn
- import yaml
- from tensorflow import keras
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
-
- from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, autopad, C3
- from models.experimental import MixConv2d, CrossConv, attempt_load
- from models.yolo import Detect
- from utils.datasets import LoadImages
- from utils.general import make_divisible, check_file, check_dataset
-
- logger = logging.getLogger(__name__)
-
-
- class tf_BN(keras.layers.Layer):
- # TensorFlow BatchNormalization wrapper
- def __init__(self, w=None):
- super(tf_BN, self).__init__()
- self.bn = keras.layers.BatchNormalization(
- beta_initializer=keras.initializers.Constant(w.bias.numpy()),
- gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
- moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
- moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
- epsilon=w.eps)
-
- def call(self, inputs):
- return self.bn(inputs)
-
-
- class tf_Pad(keras.layers.Layer):
- def __init__(self, pad):
- super(tf_Pad, self).__init__()
- self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
-
- def call(self, inputs):
- return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
-
-
- class tf_Conv(keras.layers.Layer):
- # Standard convolution
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
- # ch_in, ch_out, weights, kernel, stride, padding, groups
- super(tf_Conv, self).__init__()
- assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
- assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
- # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
- # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
-
- conv = keras.layers.Conv2D(
- c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False,
- kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()))
- self.conv = conv if s == 1 else keras.Sequential([tf_Pad(autopad(k, p)), conv])
- self.bn = tf_BN(w.bn) if hasattr(w, 'bn') else tf.identity
-
- # YOLOv5 activations
- if isinstance(w.act, nn.LeakyReLU):
- self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
- elif isinstance(w.act, nn.Hardswish):
- self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
- elif isinstance(w.act, nn.SiLU):
- self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
-
- def call(self, inputs):
- return self.act(self.bn(self.conv(inputs)))
-
-
- class tf_Focus(keras.layers.Layer):
- # Focus wh information into c-space
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
- # ch_in, ch_out, kernel, stride, padding, groups
- super(tf_Focus, self).__init__()
- self.conv = tf_Conv(c1 * 4, c2, k, s, p, g, act, w.conv)
-
- def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
- # inputs = inputs / 255. # normalize 0-255 to 0-1
- return self.conv(tf.concat([inputs[:, ::2, ::2, :],
- inputs[:, 1::2, ::2, :],
- inputs[:, ::2, 1::2, :],
- inputs[:, 1::2, 1::2, :]], 3))
-
-
- class tf_Bottleneck(keras.layers.Layer):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
- super(tf_Bottleneck, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
- self.cv2 = tf_Conv(c_, c2, 3, 1, g=g, w=w.cv2)
- self.add = shortcut and c1 == c2
-
- def call(self, inputs):
- return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
-
-
- class tf_Conv2d(keras.layers.Layer):
- # Substitution for PyTorch nn.Conv2D
- def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
- super(tf_Conv2d, self).__init__()
- assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
- self.conv = keras.layers.Conv2D(
- c2, k, s, 'VALID', use_bias=bias,
- kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
- bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )
-
- def call(self, inputs):
- return self.conv(inputs)
-
-
- class tf_BottleneckCSP(keras.layers.Layer):
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
- # ch_in, ch_out, number, shortcut, groups, expansion
- super(tf_BottleneckCSP, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
- self.cv2 = tf_Conv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
- self.cv3 = tf_Conv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
- self.cv4 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv4)
- self.bn = tf_BN(w.bn)
- self.act = lambda x: keras.activations.relu(x, alpha=0.1)
- self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
-
- def call(self, inputs):
- y1 = self.cv3(self.m(self.cv1(inputs)))
- y2 = self.cv2(inputs)
- return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
-
-
- class tf_C3(keras.layers.Layer):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
- # ch_in, ch_out, number, shortcut, groups, expansion
- super(tf_C3, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
- self.cv2 = tf_Conv(c1, c_, 1, 1, w=w.cv2)
- self.cv3 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv3)
- self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
-
- def call(self, inputs):
- return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
-
-
- class tf_SPP(keras.layers.Layer):
- # Spatial pyramid pooling layer used in YOLOv3-SPP
- def __init__(self, c1, c2, k=(5, 9, 13), w=None):
- super(tf_SPP, self).__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
- self.cv2 = tf_Conv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
- self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
-
- def call(self, inputs):
- x = self.cv1(inputs)
- return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
-
-
- class tf_Detect(keras.layers.Layer):
- def __init__(self, nc=80, anchors=(), ch=(), w=None): # detection layer
- super(tf_Detect, self).__init__()
- self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
- self.nc = nc # number of classes
- self.no = nc + 5 # number of outputs per anchor
- self.nl = len(anchors) # number of detection layers
- self.na = len(anchors[0]) // 2 # number of anchors
- self.grid = [tf.zeros(1)] * self.nl # init grid
- self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
- self.anchor_grid = tf.reshape(tf.convert_to_tensor(w.anchor_grid.numpy(), dtype=tf.float32),
- [self.nl, 1, -1, 1, 2])
- self.m = [tf_Conv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
- self.export = False # onnx export
- self.training = True # set to False after building model
- for i in range(self.nl):
- ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i]
- self.grid[i] = self._make_grid(nx, ny)
-
- def call(self, inputs):
- # x = x.copy() # for profiling
- z = [] # inference output
- self.training |= self.export
- x = []
- for i in range(self.nl):
- x.append(self.m[i](inputs[i]))
- # x(bs,20,20,255) to x(bs,3,20,20,85)
- ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i]
- x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
-
- if not self.training: # inference
- y = tf.sigmoid(x[i])
- xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
- wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
- # Normalize xywh to 0-1 to reduce calibration error
- xy /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32)
- wh /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32)
- y = tf.concat([xy, wh, y[..., 4:]], -1)
- z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
-
- return x if self.training else (tf.concat(z, 1), x)
-
- @staticmethod
- def _make_grid(nx=20, ny=20):
- # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
- # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
- xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
- return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
-
-
- class tf_Upsample(keras.layers.Layer):
- def __init__(self, size, scale_factor, mode, w=None):
- super(tf_Upsample, self).__init__()
- assert scale_factor == 2, "scale_factor must be 2"
- # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
- if opt.tf_raw_resize:
- # with default arguments: align_corners=False, half_pixel_centers=False
- self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
- size=(x.shape[1] * 2, x.shape[2] * 2))
- else:
- self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
-
- def call(self, inputs):
- return self.upsample(inputs)
-
-
- class tf_Concat(keras.layers.Layer):
- def __init__(self, dimension=1, w=None):
- super(tf_Concat, self).__init__()
- assert dimension == 1, "convert only NCHW to NHWC concat"
- self.d = 3
-
- def call(self, inputs):
- return tf.concat(inputs, self.d)
-
-
- def parse_model(d, ch, model): # model_dict, input_channels(3)
- logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
- anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
-
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
- for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
- m_str = m
- m = eval(m) if isinstance(m, str) else m # eval strings
- for j, a in enumerate(args):
- try:
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
- except:
- pass
-
- n = max(round(n * gd), 1) if n > 1 else n # depth gain
- if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
- c1, c2 = ch[f], args[0]
- c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
-
- args = [c1, c2, *args[1:]]
- if m in [BottleneckCSP, C3]:
- args.insert(2, n)
- n = 1
- elif m is nn.BatchNorm2d:
- args = [ch[f]]
- elif m is Concat:
- c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
- elif m is Detect:
- args.append([ch[x + 1] for x in f])
- if isinstance(args[1], int): # number of anchors
- args[1] = [list(range(args[1] * 2))] * len(f)
- else:
- c2 = ch[f]
-
- tf_m = eval('tf_' + m_str.replace('nn.', ''))
- m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
- else tf_m(*args, w=model.model[i]) # module
-
- torch_m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
- t = str(m)[8:-2].replace('__main__.', '') # module type
- np = sum([x.numel() for x in torch_m_.parameters()]) # number params
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
- logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
- layers.append(m_)
- ch.append(c2)
- return keras.Sequential(layers), sorted(save)
-
-
- class tf_Model():
- def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None): # model, input channels, number of classes
- super(tf_Model, self).__init__()
- if isinstance(cfg, dict):
- self.yaml = cfg # model dict
- else: # is *.yaml
- import yaml # for torch hub
- self.yaml_file = Path(cfg).name
- with open(cfg) as f:
- self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
-
- # Define model
- if nc and nc != self.yaml['nc']:
- print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc))
- self.yaml['nc'] = nc # override yaml value
- self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model) # model, savelist, ch_out
-
- def predict(self, inputs, profile=False):
- y = [] # outputs
- x = inputs
- for i, m in enumerate(self.model.layers):
- if m.f != -1: # if not from previous layer
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
-
- x = m(x) # run
- y.append(x if m.i in self.savelist else None) # save output
-
- # Add TensorFlow NMS
- if opt.tf_nms:
- boxes = xywh2xyxy(x[0][..., :4])
- probs = x[0][:, :, 4:5]
- classes = x[0][:, :, 5:]
- scores = probs * classes
- if opt.agnostic_nms:
- nms = agnostic_nms_layer()((boxes, classes, scores))
- return nms, x[1]
- else:
- boxes = tf.expand_dims(boxes, 2)
- nms = tf.image.combined_non_max_suppression(
- boxes, scores, opt.topk_per_class, opt.topk_all, opt.iou_thres, opt.score_thres, clip_boxes=False)
- return nms, x[1]
-
- return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
- # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
- # xywh = x[..., :4] # x(6300,4) boxes
- # conf = x[..., 4:5] # x(6300,1) confidences
- # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
- # return tf.concat([conf, cls, xywh], 1)
-
-
- class agnostic_nms_layer(keras.layers.Layer):
- # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
- def call(self, input):
- return tf.map_fn(agnostic_nms, input,
- fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
- name='agnostic_nms')
-
-
- def agnostic_nms(x):
- boxes, classes, scores = x
- class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
- scores_inp = tf.reduce_max(scores, -1)
- selected_inds = tf.image.non_max_suppression(
- boxes, scores_inp, max_output_size=opt.topk_all, iou_threshold=opt.iou_thres, score_threshold=opt.score_thres)
- selected_boxes = tf.gather(boxes, selected_inds)
- padded_boxes = tf.pad(selected_boxes,
- paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
- mode="CONSTANT", constant_values=0.0)
- selected_scores = tf.gather(scores_inp, selected_inds)
- padded_scores = tf.pad(selected_scores,
- paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]]],
- mode="CONSTANT", constant_values=-1.0)
- selected_classes = tf.gather(class_inds, selected_inds)
- padded_classes = tf.pad(selected_classes,
- paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]]],
- mode="CONSTANT", constant_values=-1.0)
- valid_detections = tf.shape(selected_inds)[0]
- return padded_boxes, padded_scores, padded_classes, valid_detections
-
-
- def xywh2xyxy(xywh):
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
- x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
- return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
-
-
- def representative_dataset_gen():
- # Representative dataset for use with converter.representative_dataset
- n = 0
- for path, img, im0s, vid_cap in dataset:
- # Get sample input data as a numpy array in a method of your choosing.
- n += 1
- input = np.transpose(img, [1, 2, 0])
- input = np.expand_dims(input, axis=0).astype(np.float32)
- input /= 255.0
- yield [input]
- if n >= opt.ncalib:
- break
-
-
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='cfg path')
- parser.add_argument('--weights', type=str, default='yolov5s.pt', help='weights path')
- parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size') # height, width
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- parser.add_argument('--dynamic-batch-size', action='store_true', help='dynamic batch size')
- parser.add_argument('--source', type=str, default='../data/coco128.yaml', help='dir of images or data.yaml file')
- parser.add_argument('--ncalib', type=int, default=100, help='number of calibration images')
- parser.add_argument('--tfl-int8', action='store_true', dest='tfl_int8', help='export TFLite int8 model')
- parser.add_argument('--tf-nms', action='store_true', dest='tf_nms', help='TF NMS (without TFLite export)')
- parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
- parser.add_argument('--tf-raw-resize', action='store_true', dest='tf_raw_resize',
- help='use tf.raw_ops.ResizeNearestNeighbor for resize')
- parser.add_argument('--topk-per-class', type=int, default=100, help='topk per class to keep in NMS')
- parser.add_argument('--topk-all', type=int, default=100, help='topk for all classes to keep in NMS')
- parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
- parser.add_argument('--score-thres', type=float, default=0.4, help='score threshold for NMS')
- opt = parser.parse_args()
- opt.cfg = check_file(opt.cfg) # check file
- opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
- print(opt)
-
- # Input
- img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
-
- # Load PyTorch model
- model = attempt_load(opt.weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
- model.model[-1].export = False # set Detect() layer export=True
- y = model(img) # dry run
- nc = y[0].shape[-1] - 5
-
- # TensorFlow saved_model export
- try:
- print('\nStarting TensorFlow saved_model export with TensorFlow %s...' % tf.__version__)
- tf_model = tf_Model(opt.cfg, model=model, nc=nc)
- img = tf.zeros((opt.batch_size, *opt.img_size, 3)) # NHWC Input for TensorFlow
-
- m = tf_model.model.layers[-1]
- assert isinstance(m, tf_Detect), "the last layer must be Detect"
- m.training = False
- y = tf_model.predict(img)
-
- inputs = keras.Input(shape=(*opt.img_size, 3), batch_size=None if opt.dynamic_batch_size else opt.batch_size)
- keras_model = keras.Model(inputs=inputs, outputs=tf_model.predict(inputs))
- keras_model.summary()
- path = opt.weights.replace('.pt', '_saved_model') # filename
- keras_model.save(path, save_format='tf')
- print('TensorFlow saved_model export success, saved as %s' % path)
- except Exception as e:
- print('TensorFlow saved_model export failure: %s' % e)
- traceback.print_exc(file=sys.stdout)
-
- # TensorFlow GraphDef export
- try:
- print('\nStarting TensorFlow GraphDef export with TensorFlow %s...' % tf.__version__)
-
- # https://github.com/leimao/Frozen_Graph_TensorFlow
- full_model = tf.function(lambda x: keras_model(x))
- full_model = full_model.get_concrete_function(
- tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
-
- frozen_func = convert_variables_to_constants_v2(full_model)
- frozen_func.graph.as_graph_def()
- f = opt.weights.replace('.pt', '.pb') # filename
- tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
- logdir=os.path.dirname(f),
- name=os.path.basename(f),
- as_text=False)
-
- print('TensorFlow GraphDef export success, saved as %s' % f)
- except Exception as e:
- print('TensorFlow GraphDef export failure: %s' % e)
- traceback.print_exc(file=sys.stdout)
-
- # TFLite model export
- if not opt.tf_nms:
- try:
- print('\nStarting TFLite export with TensorFlow %s...' % tf.__version__)
-
- # fp32 TFLite model export ---------------------------------------------------------------------------------
- # converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
- # converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
- # converter.allow_custom_ops = False
- # converter.experimental_new_converter = True
- # tflite_model = converter.convert()
- # f = opt.weights.replace('.pt', '.tflite') # filename
- # open(f, "wb").write(tflite_model)
-
- # fp16 TFLite model export ---------------------------------------------------------------------------------
- converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
- converter.optimizations = [tf.lite.Optimize.DEFAULT]
- # converter.representative_dataset = representative_dataset_gen
- # converter.target_spec.supported_types = [tf.float16]
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
- converter.allow_custom_ops = False
- converter.experimental_new_converter = True
- tflite_model = converter.convert()
- f = opt.weights.replace('.pt', '-fp16.tflite') # filename
- open(f, "wb").write(tflite_model)
- print('\nTFLite export success, saved as %s' % f)
-
- # int8 TFLite model export ---------------------------------------------------------------------------------
- if opt.tfl_int8:
- # Representative Dataset
- if opt.source.endswith('.yaml'):
- with open(check_file(opt.source)) as f:
- data = yaml.load(f, Loader=yaml.FullLoader) # data dict
- check_dataset(data) # check
- opt.source = data['train']
- dataset = LoadImages(opt.source, img_size=opt.img_size, auto=False)
- converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
- converter.optimizations = [tf.lite.Optimize.DEFAULT]
- converter.representative_dataset = representative_dataset_gen
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
- converter.inference_input_type = tf.uint8 # or tf.int8
- converter.inference_output_type = tf.uint8 # or tf.int8
- converter.allow_custom_ops = False
- converter.experimental_new_converter = True
- converter.experimental_new_quantizer = False
- tflite_model = converter.convert()
- f = opt.weights.replace('.pt', '-int8.tflite') # filename
- open(f, "wb").write(tflite_model)
- print('\nTFLite (int8) export success, saved as %s' % f)
-
- except Exception as e:
- print('\nTFLite export failure: %s' % e)
- traceback.print_exc(file=sys.stdout)
|