You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

58 lines
2.1KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Auto-batch utils
  4. """
  5. from copy import deepcopy
  6. import numpy as np
  7. import torch
  8. from torch.cuda import amp
  9. from utils.general import colorstr
  10. from utils.torch_utils import profile
  11. def check_train_batch_size(model, imgsz=640):
  12. # Check YOLOv5 training batch size
  13. with amp.autocast():
  14. return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
  15. def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
  16. # Automatically estimate best batch size to use `fraction` of available CUDA memory
  17. # Usage:
  18. # import torch
  19. # from utils.autobatch import autobatch
  20. # model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
  21. # print(autobatch(model))
  22. prefix = colorstr('autobatch: ')
  23. print(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
  24. device = next(model.parameters()).device # get model device
  25. if device.type == 'cpu':
  26. print(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
  27. return batch_size
  28. d = str(device).upper() # 'CUDA:0'
  29. properties = torch.cuda.get_device_properties(device) # device properties
  30. t = properties.total_memory / 1024 ** 3 # (GiB)
  31. r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GiB)
  32. a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GiB)
  33. f = t - (r + a) # free inside reserved
  34. print(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
  35. batch_sizes = [1, 2, 4, 8, 16]
  36. try:
  37. img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
  38. y = profile(img, model, n=3, device=device)
  39. except Exception as e:
  40. print(f'{prefix}{e}')
  41. y = [x[2] for x in y if x] # memory [2]
  42. batch_sizes = batch_sizes[:len(y)]
  43. p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
  44. b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
  45. print(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
  46. return b