Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

368 lines
17KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Validate a trained YOLOv5 model accuracy on a custom dataset
  4. Usage:
  5. $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
  6. """
  7. import argparse
  8. import json
  9. import os
  10. import sys
  11. from pathlib import Path
  12. from threading import Thread
  13. import numpy as np
  14. import torch
  15. from tqdm import tqdm
  16. FILE = Path(__file__).resolve()
  17. ROOT = FILE.parents[0] # YOLOv5 root directory
  18. if str(ROOT) not in sys.path:
  19. sys.path.append(str(ROOT)) # add ROOT to PATH
  20. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  21. from models.common import DetectMultiBackend
  22. from utils.callbacks import Callbacks
  23. from utils.datasets import create_dataloader
  24. from utils.general import (LOGGER, NCOLS, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
  25. coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
  26. scale_coords, xywh2xyxy, xyxy2xywh)
  27. from utils.metrics import ConfusionMatrix, ap_per_class
  28. from utils.plots import output_to_target, plot_images, plot_val_study
  29. from utils.torch_utils import select_device, time_sync
  30. def save_one_txt(predn, save_conf, shape, file):
  31. # Save one txt result
  32. gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
  33. for *xyxy, conf, cls in predn.tolist():
  34. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  35. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  36. with open(file, 'a') as f:
  37. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  38. def save_one_json(predn, jdict, path, class_map):
  39. # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
  40. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  41. box = xyxy2xywh(predn[:, :4]) # xywh
  42. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  43. for p, b in zip(predn.tolist(), box.tolist()):
  44. jdict.append({'image_id': image_id,
  45. 'category_id': class_map[int(p[5])],
  46. 'bbox': [round(x, 3) for x in b],
  47. 'score': round(p[4], 5)})
  48. def process_batch(detections, labels, iouv):
  49. """
  50. Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
  51. Arguments:
  52. detections (Array[N, 6]), x1, y1, x2, y2, conf, class
  53. labels (Array[M, 5]), class, x1, y1, x2, y2
  54. Returns:
  55. correct (Array[N, 10]), for 10 IoU levels
  56. """
  57. correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
  58. iou = box_iou(labels[:, 1:], detections[:, :4])
  59. x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
  60. if x[0].shape[0]:
  61. matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
  62. if x[0].shape[0] > 1:
  63. matches = matches[matches[:, 2].argsort()[::-1]]
  64. matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
  65. # matches = matches[matches[:, 2].argsort()[::-1]]
  66. matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
  67. matches = torch.Tensor(matches).to(iouv.device)
  68. correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
  69. return correct
  70. @torch.no_grad()
  71. def run(data,
  72. weights=None, # model.pt path(s)
  73. batch_size=32, # batch size
  74. imgsz=640, # inference size (pixels)
  75. conf_thres=0.001, # confidence threshold
  76. iou_thres=0.6, # NMS IoU threshold
  77. task='val', # train, val, test, speed or study
  78. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  79. single_cls=False, # treat as single-class dataset
  80. augment=False, # augmented inference
  81. verbose=False, # verbose output
  82. save_txt=False, # save results to *.txt
  83. save_hybrid=False, # save label+prediction hybrid results to *.txt
  84. save_conf=False, # save confidences in --save-txt labels
  85. save_json=False, # save a COCO-JSON results file
  86. project=ROOT / 'runs/val', # save to project/name
  87. name='exp', # save to project/name
  88. exist_ok=False, # existing project/name ok, do not increment
  89. half=True, # use FP16 half-precision inference
  90. dnn=False, # use OpenCV DNN for ONNX inference
  91. model=None,
  92. dataloader=None,
  93. save_dir=Path(''),
  94. plots=True,
  95. callbacks=Callbacks(),
  96. compute_loss=None,
  97. ):
  98. # Initialize/load model and set device
  99. training = model is not None
  100. if training: # called by train.py
  101. device, pt = next(model.parameters()).device, True # get model device, PyTorch model
  102. half &= device.type != 'cpu' # half precision only supported on CUDA
  103. model.half() if half else model.float()
  104. else: # called directly
  105. device = select_device(device, batch_size=batch_size)
  106. # Directories
  107. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  108. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  109. # Load model
  110. model = DetectMultiBackend(weights, device=device, dnn=dnn)
  111. stride, pt = model.stride, model.pt
  112. imgsz = check_img_size(imgsz, s=stride) # check image size
  113. half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
  114. if pt:
  115. model.model.half() if half else model.model.float()
  116. else:
  117. half = False
  118. batch_size = 1 # export.py models default to batch-size 1
  119. device = torch.device('cpu')
  120. LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends')
  121. # Data
  122. data = check_dataset(data) # check
  123. # Configure
  124. model.eval()
  125. is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset
  126. nc = 1 if single_cls else int(data['nc']) # number of classes
  127. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  128. niou = iouv.numel()
  129. # Dataloader
  130. if not training:
  131. if pt and device.type != 'cpu':
  132. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
  133. pad = 0.0 if task == 'speed' else 0.5
  134. task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  135. dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt,
  136. prefix=colorstr(f'{task}: '))[0]
  137. seen = 0
  138. confusion_matrix = ConfusionMatrix(nc=nc)
  139. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  140. class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
  141. s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  142. dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  143. loss = torch.zeros(3, device=device)
  144. jdict, stats, ap, ap_class = [], [], [], []
  145. pbar = tqdm(dataloader, desc=s, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
  146. for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
  147. t1 = time_sync()
  148. if pt:
  149. im = im.to(device, non_blocking=True)
  150. targets = targets.to(device)
  151. im = im.half() if half else im.float() # uint8 to fp16/32
  152. im /= 255 # 0 - 255 to 0.0 - 1.0
  153. nb, _, height, width = im.shape # batch size, channels, height, width
  154. t2 = time_sync()
  155. dt[0] += t2 - t1
  156. # Inference
  157. out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
  158. dt[1] += time_sync() - t2
  159. # Loss
  160. if compute_loss:
  161. loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
  162. # NMS
  163. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  164. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  165. t3 = time_sync()
  166. out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
  167. dt[2] += time_sync() - t3
  168. # Metrics
  169. for si, pred in enumerate(out):
  170. labels = targets[targets[:, 0] == si, 1:]
  171. nl = len(labels)
  172. tcls = labels[:, 0].tolist() if nl else [] # target class
  173. path, shape = Path(paths[si]), shapes[si][0]
  174. seen += 1
  175. if len(pred) == 0:
  176. if nl:
  177. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  178. continue
  179. # Predictions
  180. if single_cls:
  181. pred[:, 5] = 0
  182. predn = pred.clone()
  183. scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
  184. # Evaluate
  185. if nl:
  186. tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
  187. scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
  188. labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
  189. correct = process_batch(predn, labelsn, iouv)
  190. if plots:
  191. confusion_matrix.process_batch(predn, labelsn)
  192. else:
  193. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
  194. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls)
  195. # Save/log
  196. if save_txt:
  197. save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
  198. if save_json:
  199. save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
  200. callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
  201. # Plot images
  202. if plots and batch_i < 3:
  203. f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
  204. Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
  205. f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
  206. Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
  207. # Compute metrics
  208. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  209. if len(stats) and stats[0].any():
  210. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  211. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  212. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  213. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  214. else:
  215. nt = torch.zeros(1)
  216. # Print results
  217. pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
  218. LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  219. # Print results per class
  220. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  221. for i, c in enumerate(ap_class):
  222. LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  223. # Print speeds
  224. t = tuple(x / seen * 1E3 for x in dt) # speeds per image
  225. if not training:
  226. shape = (batch_size, 3, imgsz, imgsz)
  227. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
  228. # Plots
  229. if plots:
  230. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  231. callbacks.run('on_val_end')
  232. # Save JSON
  233. if save_json and len(jdict):
  234. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  235. anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
  236. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  237. LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
  238. with open(pred_json, 'w') as f:
  239. json.dump(jdict, f)
  240. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  241. check_requirements(['pycocotools'])
  242. from pycocotools.coco import COCO
  243. from pycocotools.cocoeval import COCOeval
  244. anno = COCO(anno_json) # init annotations api
  245. pred = anno.loadRes(pred_json) # init predictions api
  246. eval = COCOeval(anno, pred, 'bbox')
  247. if is_coco:
  248. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  249. eval.evaluate()
  250. eval.accumulate()
  251. eval.summarize()
  252. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  253. except Exception as e:
  254. LOGGER.info(f'pycocotools unable to run: {e}')
  255. # Return results
  256. model.float() # for training
  257. if not training:
  258. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  259. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
  260. maps = np.zeros(nc) + map
  261. for i, c in enumerate(ap_class):
  262. maps[c] = ap[i]
  263. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  264. def parse_opt():
  265. parser = argparse.ArgumentParser()
  266. parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
  267. parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
  268. parser.add_argument('--batch-size', type=int, default=32, help='batch size')
  269. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  270. parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
  271. parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
  272. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  273. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  274. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  275. parser.add_argument('--augment', action='store_true', help='augmented inference')
  276. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  277. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  278. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  279. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  280. parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
  281. parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
  282. parser.add_argument('--name', default='exp', help='save to project/name')
  283. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  284. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  285. parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
  286. opt = parser.parse_args()
  287. opt.data = check_yaml(opt.data) # check YAML
  288. opt.save_json |= opt.data.endswith('coco.yaml')
  289. opt.save_txt |= opt.save_hybrid
  290. print_args(FILE.stem, opt)
  291. return opt
  292. def main(opt):
  293. check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
  294. if opt.task in ('train', 'val', 'test'): # run normally
  295. if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
  296. LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
  297. run(**vars(opt))
  298. else:
  299. weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
  300. opt.half = True # FP16 for fastest results
  301. if opt.task == 'speed': # speed benchmarks
  302. # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
  303. opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
  304. for opt.weights in weights:
  305. run(**vars(opt), plots=False)
  306. elif opt.task == 'study': # speed vs mAP benchmarks
  307. # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
  308. for opt.weights in weights:
  309. f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
  310. x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
  311. for opt.imgsz in x: # img-size
  312. LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
  313. r, _, t = run(**vars(opt), plots=False)
  314. y.append(r + t) # results and times
  315. np.savetxt(f, y, fmt='%10.4g') # save
  316. os.system('zip -r study.zip study_*.txt')
  317. plot_val_study(x=x) # plot
  318. if __name__ == "__main__":
  319. opt = parse_opt()
  320. main(opt)