You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

306 lines
15KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Run inference on images, videos, directories, streams, etc.
  4. Usage:
  5. $ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640
  6. """
  7. import argparse
  8. import os
  9. import sys
  10. from pathlib import Path
  11. import cv2
  12. import numpy as np
  13. import torch
  14. import torch.backends.cudnn as cudnn
  15. FILE = Path(__file__).resolve()
  16. ROOT = FILE.parents[0] # YOLOv5 root directory
  17. if str(ROOT) not in sys.path:
  18. sys.path.append(str(ROOT)) # add ROOT to PATH
  19. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  20. from models.experimental import attempt_load
  21. from utils.datasets import LoadImages, LoadStreams
  22. from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, \
  23. increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER
  24. from utils.plots import Annotator, colors
  25. from utils.torch_utils import load_classifier, select_device, time_sync
  26. @torch.no_grad()
  27. def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
  28. source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
  29. imgsz=640, # inference size (pixels)
  30. conf_thres=0.25, # confidence threshold
  31. iou_thres=0.45, # NMS IOU threshold
  32. max_det=1000, # maximum detections per image
  33. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  34. view_img=False, # show results
  35. save_txt=False, # save results to *.txt
  36. save_conf=False, # save confidences in --save-txt labels
  37. save_crop=False, # save cropped prediction boxes
  38. nosave=False, # do not save images/videos
  39. classes=None, # filter by class: --class 0, or --class 0 2 3
  40. agnostic_nms=False, # class-agnostic NMS
  41. augment=False, # augmented inference
  42. visualize=False, # visualize features
  43. update=False, # update all models
  44. project=ROOT / 'runs/detect', # save results to project/name
  45. name='exp', # save results to project/name
  46. exist_ok=False, # existing project/name ok, do not increment
  47. line_thickness=3, # bounding box thickness (pixels)
  48. hide_labels=False, # hide labels
  49. hide_conf=False, # hide confidences
  50. half=False, # use FP16 half-precision inference
  51. dnn=False, # use OpenCV DNN for ONNX inference
  52. ):
  53. source = str(source)
  54. save_img = not nosave and not source.endswith('.txt') # save inference images
  55. webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
  56. ('rtsp://', 'rtmp://', 'http://', 'https://'))
  57. # Directories
  58. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  59. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  60. # Initialize
  61. device = select_device(device)
  62. half &= device.type != 'cpu' # half precision only supported on CUDA
  63. # Load model
  64. w = str(weights[0] if isinstance(weights, list) else weights)
  65. classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', '']
  66. check_suffix(w, suffixes) # check weights have acceptable suffix
  67. pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) # backend booleans
  68. stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
  69. if pt:
  70. model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device)
  71. stride = int(model.stride.max()) # model stride
  72. names = model.module.names if hasattr(model, 'module') else model.names # get class names
  73. if half:
  74. model.half() # to FP16
  75. if classify: # second-stage classifier
  76. modelc = load_classifier(name='resnet50', n=2) # initialize
  77. modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()
  78. elif onnx:
  79. if dnn:
  80. check_requirements(('opencv-python>=4.5.4',))
  81. net = cv2.dnn.readNetFromONNX(w)
  82. else:
  83. check_requirements(('onnx', 'onnxruntime-gpu' if torch.has_cuda else 'onnxruntime'))
  84. import onnxruntime
  85. session = onnxruntime.InferenceSession(w, None)
  86. else: # TensorFlow models
  87. import tensorflow as tf
  88. if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
  89. def wrap_frozen_graph(gd, inputs, outputs):
  90. x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped import
  91. return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs),
  92. tf.nest.map_structure(x.graph.as_graph_element, outputs))
  93. graph_def = tf.Graph().as_graph_def()
  94. graph_def.ParseFromString(open(w, 'rb').read())
  95. frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0")
  96. elif saved_model:
  97. model = tf.keras.models.load_model(w)
  98. elif tflite:
  99. interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model
  100. interpreter.allocate_tensors() # allocate
  101. input_details = interpreter.get_input_details() # inputs
  102. output_details = interpreter.get_output_details() # outputs
  103. int8 = input_details[0]['dtype'] == np.uint8 # is TFLite quantized uint8 model
  104. imgsz = check_img_size(imgsz, s=stride) # check image size
  105. # Dataloader
  106. if webcam:
  107. view_img = check_imshow()
  108. cudnn.benchmark = True # set True to speed up constant image size inference
  109. dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
  110. bs = len(dataset) # batch_size
  111. else:
  112. dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
  113. bs = 1 # batch_size
  114. vid_path, vid_writer = [None] * bs, [None] * bs
  115. # Run inference
  116. if pt and device.type != 'cpu':
  117. model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) # run once
  118. dt, seen = [0.0, 0.0, 0.0], 0
  119. for path, img, im0s, vid_cap, s in dataset:
  120. t1 = time_sync()
  121. if onnx:
  122. img = img.astype('float32')
  123. else:
  124. img = torch.from_numpy(img).to(device)
  125. img = img.half() if half else img.float() # uint8 to fp16/32
  126. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  127. if len(img.shape) == 3:
  128. img = img[None] # expand for batch dim
  129. t2 = time_sync()
  130. dt[0] += t2 - t1
  131. # Inference
  132. if pt:
  133. visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
  134. pred = model(img, augment=augment, visualize=visualize)[0]
  135. elif onnx:
  136. if dnn:
  137. net.setInput(img)
  138. pred = torch.tensor(net.forward())
  139. else:
  140. pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
  141. else: # tensorflow model (tflite, pb, saved_model)
  142. imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy
  143. if pb:
  144. pred = frozen_func(x=tf.constant(imn)).numpy()
  145. elif saved_model:
  146. pred = model(imn, training=False).numpy()
  147. elif tflite:
  148. if int8:
  149. scale, zero_point = input_details[0]['quantization']
  150. imn = (imn / scale + zero_point).astype(np.uint8) # de-scale
  151. interpreter.set_tensor(input_details[0]['index'], imn)
  152. interpreter.invoke()
  153. pred = interpreter.get_tensor(output_details[0]['index'])
  154. if int8:
  155. scale, zero_point = output_details[0]['quantization']
  156. pred = (pred.astype(np.float32) - zero_point) * scale # re-scale
  157. pred[..., 0] *= imgsz[1] # x
  158. pred[..., 1] *= imgsz[0] # y
  159. pred[..., 2] *= imgsz[1] # w
  160. pred[..., 3] *= imgsz[0] # h
  161. pred = torch.tensor(pred)
  162. t3 = time_sync()
  163. dt[1] += t3 - t2
  164. # NMS
  165. pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
  166. dt[2] += time_sync() - t3
  167. # Second-stage classifier (optional)
  168. if classify:
  169. pred = apply_classifier(pred, modelc, img, im0s)
  170. # Process predictions
  171. for i, det in enumerate(pred): # per image
  172. seen += 1
  173. if webcam: # batch_size >= 1
  174. p, im0, frame = path[i], im0s[i].copy(), dataset.count
  175. s += f'{i}: '
  176. else:
  177. p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
  178. p = Path(p) # to Path
  179. save_path = str(save_dir / p.name) # img.jpg
  180. txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
  181. s += '%gx%g ' % img.shape[2:] # print string
  182. gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
  183. imc = im0.copy() if save_crop else im0 # for save_crop
  184. annotator = Annotator(im0, line_width=line_thickness, example=str(names))
  185. if len(det):
  186. # Rescale boxes from img_size to im0 size
  187. det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
  188. # Print results
  189. for c in det[:, -1].unique():
  190. n = (det[:, -1] == c).sum() # detections per class
  191. s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
  192. # Write results
  193. for *xyxy, conf, cls in reversed(det):
  194. if save_txt: # Write to file
  195. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  196. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  197. with open(txt_path + '.txt', 'a') as f:
  198. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  199. if save_img or save_crop or view_img: # Add bbox to image
  200. c = int(cls) # integer class
  201. label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
  202. annotator.box_label(xyxy, label, color=colors(c, True))
  203. if save_crop:
  204. save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
  205. # Print time (inference-only)
  206. LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
  207. # Stream results
  208. im0 = annotator.result()
  209. if view_img:
  210. cv2.imshow(str(p), im0)
  211. cv2.waitKey(1) # 1 millisecond
  212. # Save results (image with detections)
  213. if save_img:
  214. if dataset.mode == 'image':
  215. cv2.imwrite(save_path, im0)
  216. else: # 'video' or 'stream'
  217. if vid_path[i] != save_path: # new video
  218. vid_path[i] = save_path
  219. if isinstance(vid_writer[i], cv2.VideoWriter):
  220. vid_writer[i].release() # release previous video writer
  221. if vid_cap: # video
  222. fps = vid_cap.get(cv2.CAP_PROP_FPS)
  223. w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  224. h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  225. else: # stream
  226. fps, w, h = 30, im0.shape[1], im0.shape[0]
  227. save_path += '.mp4'
  228. vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
  229. vid_writer[i].write(im0)
  230. # Print results
  231. t = tuple(x / seen * 1E3 for x in dt) # speeds per image
  232. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
  233. if save_txt or save_img:
  234. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  235. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
  236. if update:
  237. strip_optimizer(weights) # update model (to fix SourceChangeWarning)
  238. def parse_opt():
  239. parser = argparse.ArgumentParser()
  240. parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
  241. parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
  242. parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
  243. parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
  244. parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
  245. parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
  246. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  247. parser.add_argument('--view-img', action='store_true', help='show results')
  248. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  249. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  250. parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
  251. parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
  252. parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
  253. parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
  254. parser.add_argument('--augment', action='store_true', help='augmented inference')
  255. parser.add_argument('--visualize', action='store_true', help='visualize features')
  256. parser.add_argument('--update', action='store_true', help='update all models')
  257. parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
  258. parser.add_argument('--name', default='exp', help='save results to project/name')
  259. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  260. parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
  261. parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
  262. parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
  263. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  264. parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
  265. opt = parser.parse_args()
  266. opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
  267. print_args(FILE.stem, opt)
  268. return opt
  269. def main(opt):
  270. check_requirements(exclude=('tensorboard', 'thop'))
  271. run(**vars(opt))
  272. if __name__ == "__main__":
  273. opt = parse_opt()
  274. main(opt)