No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.

142 líneas
4.7KB

  1. """File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
  2. Usage:
  3. import torch
  4. model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
  5. """
  6. from pathlib import Path
  7. import torch
  8. from models.yolo import Model
  9. from utils.general import set_logging
  10. from utils.google_utils import attempt_download
  11. dependencies = ['torch', 'yaml']
  12. set_logging()
  13. def create(name, pretrained, channels, classes):
  14. """Creates a specified YOLOv5 model
  15. Arguments:
  16. name (str): name of model, i.e. 'yolov5s'
  17. pretrained (bool): load pretrained weights into the model
  18. channels (int): number of input channels
  19. classes (int): number of model classes
  20. Returns:
  21. pytorch model
  22. """
  23. config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
  24. try:
  25. model = Model(config, channels, classes)
  26. if pretrained:
  27. fname = f'{name}.pt' # checkpoint filename
  28. attempt_download(fname) # download if not found locally
  29. ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
  30. state_dict = ckpt['model'].float().state_dict() # to FP32
  31. state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
  32. model.load_state_dict(state_dict, strict=False) # load
  33. if len(ckpt['model'].names) == classes:
  34. model.names = ckpt['model'].names # set class names attribute
  35. # model = model.autoshape() # for PIL/cv2/np inputs and NMS
  36. return model
  37. except Exception as e:
  38. help_url = 'https://github.com/ultralytics/yolov5/issues/36'
  39. s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
  40. raise Exception(s) from e
  41. def yolov5s(pretrained=False, channels=3, classes=80):
  42. """YOLOv5-small model from https://github.com/ultralytics/yolov5
  43. Arguments:
  44. pretrained (bool): load pretrained weights into the model, default=False
  45. channels (int): number of input channels, default=3
  46. classes (int): number of model classes, default=80
  47. Returns:
  48. pytorch model
  49. """
  50. return create('yolov5s', pretrained, channels, classes)
  51. def yolov5m(pretrained=False, channels=3, classes=80):
  52. """YOLOv5-medium model from https://github.com/ultralytics/yolov5
  53. Arguments:
  54. pretrained (bool): load pretrained weights into the model, default=False
  55. channels (int): number of input channels, default=3
  56. classes (int): number of model classes, default=80
  57. Returns:
  58. pytorch model
  59. """
  60. return create('yolov5m', pretrained, channels, classes)
  61. def yolov5l(pretrained=False, channels=3, classes=80):
  62. """YOLOv5-large model from https://github.com/ultralytics/yolov5
  63. Arguments:
  64. pretrained (bool): load pretrained weights into the model, default=False
  65. channels (int): number of input channels, default=3
  66. classes (int): number of model classes, default=80
  67. Returns:
  68. pytorch model
  69. """
  70. return create('yolov5l', pretrained, channels, classes)
  71. def yolov5x(pretrained=False, channels=3, classes=80):
  72. """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
  73. Arguments:
  74. pretrained (bool): load pretrained weights into the model, default=False
  75. channels (int): number of input channels, default=3
  76. classes (int): number of model classes, default=80
  77. Returns:
  78. pytorch model
  79. """
  80. return create('yolov5x', pretrained, channels, classes)
  81. def custom(path_or_model='path/to/model.pt'):
  82. """YOLOv5-custom model from https://github.com/ultralytics/yolov5
  83. Arguments (3 options):
  84. path_or_model (str): 'path/to/model.pt'
  85. path_or_model (dict): torch.load('path/to/model.pt')
  86. path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
  87. Returns:
  88. pytorch model
  89. """
  90. model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
  91. if isinstance(model, dict):
  92. model = model['model'] # load model
  93. hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
  94. hub_model.load_state_dict(model.float().state_dict()) # load state_dict
  95. hub_model.names = model.names # class names
  96. return hub_model
  97. if __name__ == '__main__':
  98. model = create(name='yolov5s', pretrained=True, channels=3, classes=80) # pretrained example
  99. # model = custom(model='path/to/model.pt') # custom example
  100. model = model.autoshape() # for PIL/cv2/np inputs and NMS
  101. # Verify inference
  102. from PIL import Image
  103. imgs = [Image.open(x) for x in Path('data/images').glob('*.jpg')]
  104. results = model(imgs)
  105. results.show()
  106. results.print()