No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.

282 líneas
11KB

  1. # PyTorch utils
  2. import logging
  3. import math
  4. import os
  5. import time
  6. from contextlib import contextmanager
  7. from copy import deepcopy
  8. import torch
  9. import torch.backends.cudnn as cudnn
  10. import torch.nn as nn
  11. import torch.nn.functional as F
  12. import torchvision
  13. try:
  14. import thop # for FLOPS computation
  15. except ImportError:
  16. thop = None
  17. logger = logging.getLogger(__name__)
  18. @contextmanager
  19. def torch_distributed_zero_first(local_rank: int):
  20. """
  21. Decorator to make all processes in distributed training wait for each local_master to do something.
  22. """
  23. if local_rank not in [-1, 0]:
  24. torch.distributed.barrier()
  25. yield
  26. if local_rank == 0:
  27. torch.distributed.barrier()
  28. def init_torch_seeds(seed=0):
  29. # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
  30. torch.manual_seed(seed)
  31. if seed == 0: # slower, more reproducible
  32. cudnn.deterministic = True
  33. cudnn.benchmark = False
  34. else: # faster, less reproducible
  35. cudnn.deterministic = False
  36. cudnn.benchmark = True
  37. def select_device(device='', batch_size=None):
  38. # device = 'cpu' or '0' or '0,1,2,3'
  39. cpu_request = device.lower() == 'cpu'
  40. if device and not cpu_request: # if device requested other than 'cpu'
  41. os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
  42. assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
  43. cuda = False if cpu_request else torch.cuda.is_available()
  44. if cuda:
  45. c = 1024 ** 2 # bytes to MB
  46. ng = torch.cuda.device_count()
  47. if ng > 1 and batch_size: # check that batch_size is compatible with device_count
  48. assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
  49. x = [torch.cuda.get_device_properties(i) for i in range(ng)]
  50. s = f'Using torch {torch.__version__} '
  51. for i in range(0, ng):
  52. if i == 1:
  53. s = ' ' * len(s)
  54. logger.info("%sCUDA:%g (%s, %dMB)" % (s, i, x[i].name, x[i].total_memory / c))
  55. else:
  56. logger.info(f'Using torch {torch.__version__} CPU')
  57. logger.info('') # skip a line
  58. return torch.device('cuda:0' if cuda else 'cpu')
  59. def time_synchronized():
  60. # pytorch-accurate time
  61. torch.cuda.synchronize() if torch.cuda.is_available() else None
  62. return time.time()
  63. def profile(x, ops, n=100, device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')):
  64. # profile a pytorch module or list of modules. Example usage:
  65. # x = torch.randn(16, 3, 640, 640) # input
  66. # m1 = lambda x: x * torch.sigmoid(x)
  67. # m2 = nn.SiLU()
  68. # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
  69. x = x.to(device)
  70. x.requires_grad = True
  71. print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
  72. print(f"\n{'Params':>12s}{'FLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
  73. for m in ops if isinstance(ops, list) else [ops]:
  74. m = m.to(device) if hasattr(m, 'to') else m
  75. dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
  76. try:
  77. flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
  78. except:
  79. flops = 0
  80. for _ in range(n):
  81. t[0] = time_synchronized()
  82. y = m(x)
  83. t[1] = time_synchronized()
  84. _ = y.sum().backward()
  85. t[2] = time_synchronized()
  86. dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
  87. dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
  88. s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
  89. s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
  90. p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
  91. print(f'{p:12.4g}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
  92. def is_parallel(model):
  93. return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
  94. def intersect_dicts(da, db, exclude=()):
  95. # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
  96. return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
  97. def initialize_weights(model):
  98. for m in model.modules():
  99. t = type(m)
  100. if t is nn.Conv2d:
  101. pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  102. elif t is nn.BatchNorm2d:
  103. m.eps = 1e-3
  104. m.momentum = 0.03
  105. elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
  106. m.inplace = True
  107. def find_modules(model, mclass=nn.Conv2d):
  108. # Finds layer indices matching module class 'mclass'
  109. return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
  110. def sparsity(model):
  111. # Return global model sparsity
  112. a, b = 0., 0.
  113. for p in model.parameters():
  114. a += p.numel()
  115. b += (p == 0).sum()
  116. return b / a
  117. def prune(model, amount=0.3):
  118. # Prune model to requested global sparsity
  119. import torch.nn.utils.prune as prune
  120. print('Pruning model... ', end='')
  121. for name, m in model.named_modules():
  122. if isinstance(m, nn.Conv2d):
  123. prune.l1_unstructured(m, name='weight', amount=amount) # prune
  124. prune.remove(m, 'weight') # make permanent
  125. print(' %.3g global sparsity' % sparsity(model))
  126. def fuse_conv_and_bn(conv, bn):
  127. # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
  128. fusedconv = nn.Conv2d(conv.in_channels,
  129. conv.out_channels,
  130. kernel_size=conv.kernel_size,
  131. stride=conv.stride,
  132. padding=conv.padding,
  133. groups=conv.groups,
  134. bias=True).requires_grad_(False).to(conv.weight.device)
  135. # prepare filters
  136. w_conv = conv.weight.clone().view(conv.out_channels, -1)
  137. w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
  138. fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
  139. # prepare spatial bias
  140. b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
  141. b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
  142. fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
  143. return fusedconv
  144. def model_info(model, verbose=False, img_size=640):
  145. # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
  146. n_p = sum(x.numel() for x in model.parameters()) # number parameters
  147. n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
  148. if verbose:
  149. print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
  150. for i, (name, p) in enumerate(model.named_parameters()):
  151. name = name.replace('module_list.', '')
  152. print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
  153. (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
  154. try: # FLOPS
  155. from thop import profile
  156. stride = int(model.stride.max()) if hasattr(model, 'stride') else 32
  157. img = torch.zeros((1, 3, stride, stride), device=next(model.parameters()).device) # input
  158. flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride FLOPS
  159. img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
  160. fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 FLOPS
  161. except (ImportError, Exception):
  162. fs = ''
  163. logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
  164. def load_classifier(name='resnet101', n=2):
  165. # Loads a pretrained model reshaped to n-class output
  166. model = torchvision.models.__dict__[name](pretrained=True)
  167. # ResNet model properties
  168. # input_size = [3, 224, 224]
  169. # input_space = 'RGB'
  170. # input_range = [0, 1]
  171. # mean = [0.485, 0.456, 0.406]
  172. # std = [0.229, 0.224, 0.225]
  173. # Reshape output to n classes
  174. filters = model.fc.weight.shape[1]
  175. model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
  176. model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
  177. model.fc.out_features = n
  178. return model
  179. def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
  180. # scales img(bs,3,y,x) by ratio
  181. if ratio == 1.0:
  182. return img
  183. else:
  184. h, w = img.shape[2:]
  185. s = (int(h * ratio), int(w * ratio)) # new size
  186. img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
  187. if not same_shape: # pad/crop img
  188. gs = 32 # (pixels) grid size
  189. h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
  190. return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
  191. def copy_attr(a, b, include=(), exclude=()):
  192. # Copy attributes from b to a, options to only include [...] and to exclude [...]
  193. for k, v in b.__dict__.items():
  194. if (len(include) and k not in include) or k.startswith('_') or k in exclude:
  195. continue
  196. else:
  197. setattr(a, k, v)
  198. class ModelEMA:
  199. """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
  200. Keep a moving average of everything in the model state_dict (parameters and buffers).
  201. This is intended to allow functionality like
  202. https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
  203. A smoothed version of the weights is necessary for some training schemes to perform well.
  204. This class is sensitive where it is initialized in the sequence of model init,
  205. GPU assignment and distributed training wrappers.
  206. """
  207. def __init__(self, model, decay=0.9999, updates=0):
  208. # Create EMA
  209. self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
  210. # if next(model.parameters()).device.type != 'cpu':
  211. # self.ema.half() # FP16 EMA
  212. self.updates = updates # number of EMA updates
  213. self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
  214. for p in self.ema.parameters():
  215. p.requires_grad_(False)
  216. def update(self, model):
  217. # Update EMA parameters
  218. with torch.no_grad():
  219. self.updates += 1
  220. d = self.decay(self.updates)
  221. msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
  222. for k, v in self.ema.state_dict().items():
  223. if v.dtype.is_floating_point:
  224. v *= d
  225. v += (1. - d) * msd[k].detach()
  226. def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
  227. # Update EMA attributes
  228. copy_attr(self.ema, model, include, exclude)