Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

351 Zeilen
14KB

  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. PyTorch utils
  4. """
  5. import datetime
  6. import logging
  7. import math
  8. import os
  9. import platform
  10. import subprocess
  11. import time
  12. from contextlib import contextmanager
  13. from copy import deepcopy
  14. from pathlib import Path
  15. import torch
  16. import torch.backends.cudnn as cudnn
  17. import torch.distributed as dist
  18. import torch.nn as nn
  19. import torch.nn.functional as F
  20. import torchvision
  21. try:
  22. import thop # for FLOPs computation
  23. except ImportError:
  24. thop = None
  25. LOGGER = logging.getLogger(__name__)
  26. @contextmanager
  27. def torch_distributed_zero_first(local_rank: int):
  28. """
  29. Decorator to make all processes in distributed training wait for each local_master to do something.
  30. """
  31. if local_rank not in [-1, 0]:
  32. dist.barrier(device_ids=[local_rank])
  33. yield
  34. if local_rank == 0:
  35. dist.barrier(device_ids=[0])
  36. def init_torch_seeds(seed=0):
  37. # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
  38. torch.manual_seed(seed)
  39. if seed == 0: # slower, more reproducible
  40. cudnn.benchmark, cudnn.deterministic = False, True
  41. else: # faster, less reproducible
  42. cudnn.benchmark, cudnn.deterministic = True, False
  43. def date_modified(path=__file__):
  44. # return human-readable file modification date, i.e. '2021-3-26'
  45. t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
  46. return f'{t.year}-{t.month}-{t.day}'
  47. def git_describe(path=Path(__file__).parent): # path must be a directory
  48. # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
  49. s = f'git -C {path} describe --tags --long --always'
  50. try:
  51. return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
  52. except subprocess.CalledProcessError as e:
  53. return '' # not a git repository
  54. def select_device(device='', batch_size=None):
  55. # device = 'cpu' or '0' or '0,1,2,3'
  56. s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
  57. device = str(device).strip().lower().replace('cuda:', '') # to string, 'cuda:0' to '0'
  58. cpu = device == 'cpu'
  59. if cpu:
  60. os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
  61. elif device: # non-cpu device requested
  62. os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
  63. assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
  64. cuda = not cpu and torch.cuda.is_available()
  65. if cuda:
  66. devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
  67. n = len(devices) # device count
  68. if n > 1 and batch_size: # check batch_size is divisible by device_count
  69. assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
  70. space = ' ' * (len(s) + 1)
  71. for i, d in enumerate(devices):
  72. p = torch.cuda.get_device_properties(i)
  73. s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
  74. else:
  75. s += 'CPU\n'
  76. LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
  77. return torch.device('cuda:0' if cuda else 'cpu')
  78. def time_sync():
  79. # pytorch-accurate time
  80. if torch.cuda.is_available():
  81. torch.cuda.synchronize()
  82. return time.time()
  83. def profile(input, ops, n=10, device=None):
  84. # YOLOv5 speed/memory/FLOPs profiler
  85. #
  86. # Usage:
  87. # input = torch.randn(16, 3, 640, 640)
  88. # m1 = lambda x: x * torch.sigmoid(x)
  89. # m2 = nn.SiLU()
  90. # profile(input, [m1, m2], n=100) # profile over 100 iterations
  91. results = []
  92. logging.basicConfig(format="%(message)s", level=logging.INFO)
  93. device = device or select_device()
  94. print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
  95. f"{'input':>24s}{'output':>24s}")
  96. for x in input if isinstance(input, list) else [input]:
  97. x = x.to(device)
  98. x.requires_grad = True
  99. for m in ops if isinstance(ops, list) else [ops]:
  100. m = m.to(device) if hasattr(m, 'to') else m # device
  101. m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
  102. tf, tb, t = 0., 0., [0., 0., 0.] # dt forward, backward
  103. try:
  104. flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
  105. except:
  106. flops = 0
  107. try:
  108. for _ in range(n):
  109. t[0] = time_sync()
  110. y = m(x)
  111. t[1] = time_sync()
  112. try:
  113. _ = (sum([yi.sum() for yi in y]) if isinstance(y, list) else y).sum().backward()
  114. t[2] = time_sync()
  115. except Exception as e: # no backward method
  116. print(e)
  117. t[2] = float('nan')
  118. tf += (t[1] - t[0]) * 1000 / n # ms per op forward
  119. tb += (t[2] - t[1]) * 1000 / n # ms per op backward
  120. mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
  121. s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
  122. s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
  123. p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
  124. print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
  125. results.append([p, flops, mem, tf, tb, s_in, s_out])
  126. except Exception as e:
  127. print(e)
  128. results.append(None)
  129. torch.cuda.empty_cache()
  130. return results
  131. def is_parallel(model):
  132. # Returns True if model is of type DP or DDP
  133. return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
  134. def de_parallel(model):
  135. # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
  136. return model.module if is_parallel(model) else model
  137. def intersect_dicts(da, db, exclude=()):
  138. # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
  139. return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
  140. def initialize_weights(model):
  141. for m in model.modules():
  142. t = type(m)
  143. if t is nn.Conv2d:
  144. pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  145. elif t is nn.BatchNorm2d:
  146. m.eps = 1e-3
  147. m.momentum = 0.03
  148. elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
  149. m.inplace = True
  150. def find_modules(model, mclass=nn.Conv2d):
  151. # Finds layer indices matching module class 'mclass'
  152. return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
  153. def sparsity(model):
  154. # Return global model sparsity
  155. a, b = 0., 0.
  156. for p in model.parameters():
  157. a += p.numel()
  158. b += (p == 0).sum()
  159. return b / a
  160. def prune(model, amount=0.3):
  161. # Prune model to requested global sparsity
  162. import torch.nn.utils.prune as prune
  163. print('Pruning model... ', end='')
  164. for name, m in model.named_modules():
  165. if isinstance(m, nn.Conv2d):
  166. prune.l1_unstructured(m, name='weight', amount=amount) # prune
  167. prune.remove(m, 'weight') # make permanent
  168. print(' %.3g global sparsity' % sparsity(model))
  169. def fuse_conv_and_bn(conv, bn):
  170. # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
  171. fusedconv = nn.Conv2d(conv.in_channels,
  172. conv.out_channels,
  173. kernel_size=conv.kernel_size,
  174. stride=conv.stride,
  175. padding=conv.padding,
  176. groups=conv.groups,
  177. bias=True).requires_grad_(False).to(conv.weight.device)
  178. # prepare filters
  179. w_conv = conv.weight.clone().view(conv.out_channels, -1)
  180. w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
  181. fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
  182. # prepare spatial bias
  183. b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
  184. b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
  185. fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
  186. return fusedconv
  187. def model_info(model, verbose=False, img_size=640):
  188. # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
  189. n_p = sum(x.numel() for x in model.parameters()) # number parameters
  190. n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
  191. if verbose:
  192. print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
  193. for i, (name, p) in enumerate(model.named_parameters()):
  194. name = name.replace('module_list.', '')
  195. print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
  196. (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
  197. try: # FLOPs
  198. from thop import profile
  199. stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
  200. img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
  201. flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
  202. img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
  203. fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs
  204. except (ImportError, Exception):
  205. fs = ''
  206. LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
  207. def load_classifier(name='resnet101', n=2):
  208. # Loads a pretrained model reshaped to n-class output
  209. model = torchvision.models.__dict__[name](pretrained=True)
  210. # ResNet model properties
  211. # input_size = [3, 224, 224]
  212. # input_space = 'RGB'
  213. # input_range = [0, 1]
  214. # mean = [0.485, 0.456, 0.406]
  215. # std = [0.229, 0.224, 0.225]
  216. # Reshape output to n classes
  217. filters = model.fc.weight.shape[1]
  218. model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
  219. model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
  220. model.fc.out_features = n
  221. return model
  222. def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
  223. # scales img(bs,3,y,x) by ratio constrained to gs-multiple
  224. if ratio == 1.0:
  225. return img
  226. else:
  227. h, w = img.shape[2:]
  228. s = (int(h * ratio), int(w * ratio)) # new size
  229. img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
  230. if not same_shape: # pad/crop img
  231. h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
  232. return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
  233. def copy_attr(a, b, include=(), exclude=()):
  234. # Copy attributes from b to a, options to only include [...] and to exclude [...]
  235. for k, v in b.__dict__.items():
  236. if (len(include) and k not in include) or k.startswith('_') or k in exclude:
  237. continue
  238. else:
  239. setattr(a, k, v)
  240. class EarlyStopping:
  241. # YOLOv5 simple early stopper
  242. def __init__(self, patience=30):
  243. self.best_fitness = 0.0 # i.e. mAP
  244. self.best_epoch = 0
  245. self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
  246. self.possible_stop = False # possible stop may occur next epoch
  247. def __call__(self, epoch, fitness):
  248. if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
  249. self.best_epoch = epoch
  250. self.best_fitness = fitness
  251. delta = epoch - self.best_epoch # epochs without improvement
  252. self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
  253. stop = delta >= self.patience # stop training if patience exceeded
  254. if stop:
  255. LOGGER.info(f'EarlyStopping patience {self.patience} exceeded, stopping training.')
  256. return stop
  257. class ModelEMA:
  258. """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
  259. Keep a moving average of everything in the model state_dict (parameters and buffers).
  260. This is intended to allow functionality like
  261. https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
  262. A smoothed version of the weights is necessary for some training schemes to perform well.
  263. This class is sensitive where it is initialized in the sequence of model init,
  264. GPU assignment and distributed training wrappers.
  265. """
  266. def __init__(self, model, decay=0.9999, updates=0):
  267. # Create EMA
  268. self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
  269. # if next(model.parameters()).device.type != 'cpu':
  270. # self.ema.half() # FP16 EMA
  271. self.updates = updates # number of EMA updates
  272. self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
  273. for p in self.ema.parameters():
  274. p.requires_grad_(False)
  275. def update(self, model):
  276. # Update EMA parameters
  277. with torch.no_grad():
  278. self.updates += 1
  279. d = self.decay(self.updates)
  280. msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
  281. for k, v in self.ema.state_dict().items():
  282. if v.dtype.is_floating_point:
  283. v *= d
  284. v += (1. - d) * msd[k].detach()
  285. def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
  286. # Update EMA attributes
  287. copy_attr(self.ema, model, include, exclude)