Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

603 Zeilen
31KB

  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import time
  7. from pathlib import Path
  8. from threading import Thread
  9. from warnings import warn
  10. import numpy as np
  11. import torch.distributed as dist
  12. import torch.nn as nn
  13. import torch.nn.functional as F
  14. import torch.optim as optim
  15. import torch.optim.lr_scheduler as lr_scheduler
  16. import torch.utils.data
  17. import yaml
  18. from torch.cuda import amp
  19. from torch.nn.parallel import DistributedDataParallel as DDP
  20. from torch.utils.tensorboard import SummaryWriter
  21. from tqdm import tqdm
  22. import test # import test.py to get mAP after each epoch
  23. from models.experimental import attempt_load
  24. from models.yolo import Model
  25. from utils.autoanchor import check_anchors
  26. from utils.datasets import create_dataloader
  27. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  28. fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  29. check_requirements, print_mutation, set_logging, one_cycle
  30. from utils.google_utils import attempt_download
  31. from utils.loss import compute_loss
  32. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  33. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
  34. logger = logging.getLogger(__name__)
  35. try:
  36. import wandb
  37. except ImportError:
  38. wandb = None
  39. logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
  40. def train(hyp, opt, device, tb_writer=None, wandb=None):
  41. logger.info(f'Hyperparameters {hyp}')
  42. save_dir, epochs, batch_size, total_batch_size, weights, rank = \
  43. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
  44. # Directories
  45. wdir = save_dir / 'weights'
  46. wdir.mkdir(parents=True, exist_ok=True) # make dir
  47. last = wdir / 'last.pt'
  48. best = wdir / 'best.pt'
  49. results_file = save_dir / 'results.txt'
  50. # Save run settings
  51. with open(save_dir / 'hyp.yaml', 'w') as f:
  52. yaml.dump(hyp, f, sort_keys=False)
  53. with open(save_dir / 'opt.yaml', 'w') as f:
  54. yaml.dump(vars(opt), f, sort_keys=False)
  55. # Configure
  56. plots = not opt.evolve # create plots
  57. cuda = device.type != 'cpu'
  58. init_seeds(2 + rank)
  59. with open(opt.data) as f:
  60. data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
  61. with torch_distributed_zero_first(rank):
  62. check_dataset(data_dict) # check
  63. train_path = data_dict['train']
  64. test_path = data_dict['val']
  65. nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
  66. names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  67. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  68. # Model
  69. pretrained = weights.endswith('.pt')
  70. if pretrained:
  71. with torch_distributed_zero_first(rank):
  72. attempt_download(weights) # download if not found locally
  73. ckpt = torch.load(weights, map_location=device) # load checkpoint
  74. if hyp.get('anchors'):
  75. ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
  76. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
  77. exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys
  78. state_dict = ckpt['model'].float().state_dict() # to FP32
  79. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  80. model.load_state_dict(state_dict, strict=False) # load
  81. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  82. else:
  83. model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
  84. # Freeze
  85. freeze = [] # parameter names to freeze (full or partial)
  86. for k, v in model.named_parameters():
  87. v.requires_grad = True # train all layers
  88. if any(x in k for x in freeze):
  89. print('freezing %s' % k)
  90. v.requires_grad = False
  91. # Optimizer
  92. nbs = 64 # nominal batch size
  93. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  94. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  95. logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  96. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  97. for k, v in model.named_modules():
  98. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  99. pg2.append(v.bias) # biases
  100. if isinstance(v, nn.BatchNorm2d):
  101. pg0.append(v.weight) # no decay
  102. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  103. pg1.append(v.weight) # apply decay
  104. if opt.adam:
  105. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  106. else:
  107. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  108. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  109. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  110. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  111. del pg0, pg1, pg2
  112. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  113. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  114. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  115. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  116. # plot_lr_scheduler(optimizer, scheduler, epochs)
  117. # Logging
  118. if rank in [-1, 0] and wandb and wandb.run is None:
  119. opt.hyp = hyp # add hyperparameters
  120. wandb_run = wandb.init(config=opt, resume="allow",
  121. project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
  122. name=save_dir.stem,
  123. id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
  124. loggers = {'wandb': wandb} # loggers dict
  125. # Resume
  126. start_epoch, best_fitness = 0, 0.0
  127. if pretrained:
  128. # Optimizer
  129. if ckpt['optimizer'] is not None:
  130. optimizer.load_state_dict(ckpt['optimizer'])
  131. best_fitness = ckpt['best_fitness']
  132. # Results
  133. if ckpt.get('training_results') is not None:
  134. with open(results_file, 'w') as file:
  135. file.write(ckpt['training_results']) # write results.txt
  136. # Epochs
  137. start_epoch = ckpt['epoch'] + 1
  138. if opt.resume:
  139. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  140. if epochs < start_epoch:
  141. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  142. (weights, ckpt['epoch'], epochs))
  143. epochs += ckpt['epoch'] # finetune additional epochs
  144. del ckpt, state_dict
  145. # Image sizes
  146. gs = int(model.stride.max()) # grid size (max stride)
  147. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  148. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  149. # DP mode
  150. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  151. model = torch.nn.DataParallel(model)
  152. # SyncBatchNorm
  153. if opt.sync_bn and cuda and rank != -1:
  154. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  155. logger.info('Using SyncBatchNorm()')
  156. # EMA
  157. ema = ModelEMA(model) if rank in [-1, 0] else None
  158. # DDP mode
  159. if cuda and rank != -1:
  160. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
  161. # Trainloader
  162. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
  163. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
  164. world_size=opt.world_size, workers=opt.workers,
  165. image_weights=opt.image_weights, quad=opt.quad)
  166. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  167. nb = len(dataloader) # number of batches
  168. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  169. # Process 0
  170. if rank in [-1, 0]:
  171. ema.updates = start_epoch * nb // accumulate # set EMA updates
  172. testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, # testloader
  173. hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
  174. rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5)[0]
  175. if not opt.resume:
  176. labels = np.concatenate(dataset.labels, 0)
  177. c = torch.tensor(labels[:, 0]) # classes
  178. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  179. # model._initialize_biases(cf.to(device))
  180. if plots:
  181. plot_labels(labels, save_dir, loggers)
  182. if tb_writer:
  183. tb_writer.add_histogram('classes', c, 0)
  184. # Anchors
  185. if not opt.noautoanchor:
  186. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  187. # Model parameters
  188. hyp['cls'] *= nc / 80. # scale hyp['cls'] to class count
  189. hyp['obj'] *= imgsz ** 2 / 640. ** 2 * 3. / nl # scale hyp['obj'] to image size and output layers
  190. model.nc = nc # attach number of classes to model
  191. model.hyp = hyp # attach hyperparameters to model
  192. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  193. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  194. model.names = names
  195. # Start training
  196. t0 = time.time()
  197. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  198. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  199. maps = np.zeros(nc) # mAP per class
  200. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  201. scheduler.last_epoch = start_epoch - 1 # do not move
  202. scaler = amp.GradScaler(enabled=cuda)
  203. logger.info('Image sizes %g train, %g test\n'
  204. 'Using %g dataloader workers\nLogging results to %s\n'
  205. 'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
  206. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  207. model.train()
  208. # Update image weights (optional)
  209. if opt.image_weights:
  210. # Generate indices
  211. if rank in [-1, 0]:
  212. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  213. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  214. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  215. # Broadcast if DDP
  216. if rank != -1:
  217. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  218. dist.broadcast(indices, 0)
  219. if rank != 0:
  220. dataset.indices = indices.cpu().numpy()
  221. # Update mosaic border
  222. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  223. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  224. mloss = torch.zeros(4, device=device) # mean losses
  225. if rank != -1:
  226. dataloader.sampler.set_epoch(epoch)
  227. pbar = enumerate(dataloader)
  228. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
  229. if rank in [-1, 0]:
  230. pbar = tqdm(pbar, total=nb) # progress bar
  231. optimizer.zero_grad()
  232. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  233. ni = i + nb * epoch # number integrated batches (since train start)
  234. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  235. # Warmup
  236. if ni <= nw:
  237. xi = [0, nw] # x interp
  238. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  239. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  240. for j, x in enumerate(optimizer.param_groups):
  241. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  242. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  243. if 'momentum' in x:
  244. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  245. # Multi-scale
  246. if opt.multi_scale:
  247. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  248. sf = sz / max(imgs.shape[2:]) # scale factor
  249. if sf != 1:
  250. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  251. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  252. # Forward
  253. with amp.autocast(enabled=cuda):
  254. pred = model(imgs) # forward
  255. loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
  256. if rank != -1:
  257. loss *= opt.world_size # gradient averaged between devices in DDP mode
  258. if opt.quad:
  259. loss *= 4.
  260. # Backward
  261. scaler.scale(loss).backward()
  262. # Optimize
  263. if ni % accumulate == 0:
  264. scaler.step(optimizer) # optimizer.step
  265. scaler.update()
  266. optimizer.zero_grad()
  267. if ema:
  268. ema.update(model)
  269. # Print
  270. if rank in [-1, 0]:
  271. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  272. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  273. s = ('%10s' * 2 + '%10.4g' * 6) % (
  274. '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
  275. pbar.set_description(s)
  276. # Plot
  277. if plots and ni < 3:
  278. f = save_dir / f'train_batch{ni}.jpg' # filename
  279. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  280. # if tb_writer:
  281. # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
  282. # tb_writer.add_graph(model, imgs) # add model to tensorboard
  283. elif plots and ni == 3 and wandb:
  284. wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})
  285. # end batch ------------------------------------------------------------------------------------------------
  286. # end epoch ----------------------------------------------------------------------------------------------------
  287. # Scheduler
  288. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  289. scheduler.step()
  290. # DDP process 0 or single-GPU
  291. if rank in [-1, 0]:
  292. # mAP
  293. if ema:
  294. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  295. final_epoch = epoch + 1 == epochs
  296. if not opt.notest or final_epoch: # Calculate mAP
  297. results, maps, times = test.test(opt.data,
  298. batch_size=total_batch_size,
  299. imgsz=imgsz_test,
  300. model=ema.ema,
  301. single_cls=opt.single_cls,
  302. dataloader=testloader,
  303. save_dir=save_dir,
  304. plots=plots and final_epoch,
  305. log_imgs=opt.log_imgs if wandb else 0)
  306. # Write
  307. with open(results_file, 'a') as f:
  308. f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  309. if len(opt.name) and opt.bucket:
  310. os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
  311. # Log
  312. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  313. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  314. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  315. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  316. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  317. if tb_writer:
  318. tb_writer.add_scalar(tag, x, epoch) # tensorboard
  319. if wandb:
  320. wandb.log({tag: x}) # W&B
  321. # Update best mAP
  322. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  323. if fi > best_fitness:
  324. best_fitness = fi
  325. # Save model
  326. save = (not opt.nosave) or (final_epoch and not opt.evolve)
  327. if save:
  328. with open(results_file, 'r') as f: # create checkpoint
  329. ckpt = {'epoch': epoch,
  330. 'best_fitness': best_fitness,
  331. 'training_results': f.read(),
  332. 'model': ema.ema,
  333. 'optimizer': None if final_epoch else optimizer.state_dict(),
  334. 'wandb_id': wandb_run.id if wandb else None}
  335. # Save last, best and delete
  336. torch.save(ckpt, last)
  337. if best_fitness == fi:
  338. torch.save(ckpt, best)
  339. del ckpt
  340. # end epoch ----------------------------------------------------------------------------------------------------
  341. # end training
  342. if rank in [-1, 0]:
  343. # Strip optimizers
  344. final = best if best.exists() else last # final model
  345. for f in [last, best]:
  346. if f.exists():
  347. strip_optimizer(f) # strip optimizers
  348. if opt.bucket:
  349. os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
  350. # Plots
  351. if plots:
  352. plot_results(save_dir=save_dir) # save as results.png
  353. if wandb:
  354. files = ['results.png', 'precision_recall_curve.png', 'confusion_matrix.png']
  355. wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
  356. if (save_dir / f).exists()]})
  357. if opt.log_artifacts:
  358. wandb.log_artifact(artifact_or_path=str(final), type='model', name=save_dir.stem)
  359. # Test best.pt
  360. logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
  361. if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
  362. for conf, iou, save_json in ([0.25, 0.45, False], [0.001, 0.65, True]): # speed, mAP tests
  363. results, _, _ = test.test(opt.data,
  364. batch_size=total_batch_size,
  365. imgsz=imgsz_test,
  366. conf_thres=conf,
  367. iou_thres=iou,
  368. model=attempt_load(final, device).half(),
  369. single_cls=opt.single_cls,
  370. dataloader=testloader,
  371. save_dir=save_dir,
  372. save_json=save_json,
  373. plots=False)
  374. else:
  375. dist.destroy_process_group()
  376. wandb.run.finish() if wandb and wandb.run else None
  377. torch.cuda.empty_cache()
  378. return results
  379. if __name__ == '__main__':
  380. parser = argparse.ArgumentParser()
  381. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  382. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  383. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
  384. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
  385. parser.add_argument('--epochs', type=int, default=300)
  386. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  387. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  388. parser.add_argument('--rect', action='store_true', help='rectangular training')
  389. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  390. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  391. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  392. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  393. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  394. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  395. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  396. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  397. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  398. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  399. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  400. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  401. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  402. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  403. parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
  404. parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
  405. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  406. parser.add_argument('--project', default='runs/train', help='save to project/name')
  407. parser.add_argument('--name', default='exp', help='save to project/name')
  408. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  409. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  410. opt = parser.parse_args()
  411. # Set DDP variables
  412. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  413. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  414. set_logging(opt.global_rank)
  415. if opt.global_rank in [-1, 0]:
  416. check_git_status()
  417. check_requirements()
  418. # Resume
  419. if opt.resume: # resume an interrupted run
  420. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  421. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  422. apriori = opt.global_rank, opt.local_rank
  423. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  424. opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
  425. opt.cfg, opt.weights, opt.resume, opt.global_rank, opt.local_rank = '', ckpt, True, *apriori # reinstate
  426. logger.info('Resuming training from %s' % ckpt)
  427. else:
  428. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  429. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  430. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  431. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  432. opt.name = 'evolve' if opt.evolve else opt.name
  433. opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
  434. # DDP mode
  435. opt.total_batch_size = opt.batch_size
  436. device = select_device(opt.device, batch_size=opt.batch_size)
  437. if opt.local_rank != -1:
  438. assert torch.cuda.device_count() > opt.local_rank
  439. torch.cuda.set_device(opt.local_rank)
  440. device = torch.device('cuda', opt.local_rank)
  441. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  442. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  443. opt.batch_size = opt.total_batch_size // opt.world_size
  444. # Hyperparameters
  445. with open(opt.hyp) as f:
  446. hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
  447. if 'box' not in hyp:
  448. warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' %
  449. (opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
  450. hyp['box'] = hyp.pop('giou')
  451. # Train
  452. logger.info(opt)
  453. if not opt.evolve:
  454. tb_writer = None # init loggers
  455. if opt.global_rank in [-1, 0]:
  456. logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
  457. tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
  458. train(hyp, opt, device, tb_writer, wandb)
  459. # Evolve hyperparameters (optional)
  460. else:
  461. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  462. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  463. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  464. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  465. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  466. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  467. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  468. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  469. 'box': (1, 0.02, 0.2), # box loss gain
  470. 'cls': (1, 0.2, 4.0), # cls loss gain
  471. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  472. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  473. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  474. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  475. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  476. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  477. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  478. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  479. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  480. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  481. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  482. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  483. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  484. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  485. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  486. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  487. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  488. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  489. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  490. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  491. opt.notest, opt.nosave = True, True # only test/save final epoch
  492. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  493. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  494. if opt.bucket:
  495. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  496. for _ in range(300): # generations to evolve
  497. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  498. # Select parent(s)
  499. parent = 'single' # parent selection method: 'single' or 'weighted'
  500. x = np.loadtxt('evolve.txt', ndmin=2)
  501. n = min(5, len(x)) # number of previous results to consider
  502. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  503. w = fitness(x) - fitness(x).min() # weights
  504. if parent == 'single' or len(x) == 1:
  505. # x = x[random.randint(0, n - 1)] # random selection
  506. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  507. elif parent == 'weighted':
  508. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  509. # Mutate
  510. mp, s = 0.8, 0.2 # mutation probability, sigma
  511. npr = np.random
  512. npr.seed(int(time.time()))
  513. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  514. ng = len(meta)
  515. v = np.ones(ng)
  516. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  517. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  518. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  519. hyp[k] = float(x[i + 7] * v[i]) # mutate
  520. # Constrain to limits
  521. for k, v in meta.items():
  522. hyp[k] = max(hyp[k], v[1]) # lower limit
  523. hyp[k] = min(hyp[k], v[2]) # upper limit
  524. hyp[k] = round(hyp[k], 5) # significant digits
  525. # Train mutation
  526. results = train(hyp.copy(), opt, device, wandb=wandb)
  527. # Write mutation results
  528. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  529. # Plot results
  530. plot_evolution(yaml_file)
  531. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  532. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')