高速公路违停检测
Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. from collections import namedtuple
  2. Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
  3. PRIMITIVES = [
  4. 'skip',
  5. 'conv',
  6. 'conv_di',
  7. 'conv_2x',
  8. 'conv_2x_di',
  9. ]
  10. NASNet = Genotype(
  11. normal = [
  12. ('sep_conv_5x5', 1),
  13. ('sep_conv_3x3', 0),
  14. ('sep_conv_5x5', 0),
  15. ('sep_conv_3x3', 0),
  16. ('avg_pool_3x3', 1),
  17. ('skip_connect', 0),
  18. ('avg_pool_3x3', 0),
  19. ('avg_pool_3x3', 0),
  20. ('sep_conv_3x3', 1),
  21. ('skip_connect', 1),
  22. ],
  23. normal_concat = [2, 3, 4, 5, 6],
  24. reduce = [
  25. ('sep_conv_5x5', 1),
  26. ('sep_conv_7x7', 0),
  27. ('max_pool_3x3', 1),
  28. ('sep_conv_7x7', 0),
  29. ('avg_pool_3x3', 1),
  30. ('sep_conv_5x5', 0),
  31. ('skip_connect', 3),
  32. ('avg_pool_3x3', 2),
  33. ('sep_conv_3x3', 2),
  34. ('max_pool_3x3', 1),
  35. ],
  36. reduce_concat = [4, 5, 6],
  37. )
  38. AmoebaNet = Genotype(
  39. normal = [
  40. ('avg_pool_3x3', 0),
  41. ('max_pool_3x3', 1),
  42. ('sep_conv_3x3', 0),
  43. ('sep_conv_5x5', 2),
  44. ('sep_conv_3x3', 0),
  45. ('avg_pool_3x3', 3),
  46. ('sep_conv_3x3', 1),
  47. ('skip_connect', 1),
  48. ('skip_connect', 0),
  49. ('avg_pool_3x3', 1),
  50. ],
  51. normal_concat = [4, 5, 6],
  52. reduce = [
  53. ('avg_pool_3x3', 0),
  54. ('sep_conv_3x3', 1),
  55. ('max_pool_3x3', 0),
  56. ('sep_conv_7x7', 2),
  57. ('sep_conv_7x7', 0),
  58. ('avg_pool_3x3', 1),
  59. ('max_pool_3x3', 0),
  60. ('max_pool_3x3', 1),
  61. ('conv_7x1_1x7', 0),
  62. ('sep_conv_3x3', 5),
  63. ],
  64. reduce_concat = [3, 4, 6]
  65. )
  66. DARTS_V1 = Genotype(normal=[('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('skip_connect', 0), ('sep_conv_3x3', 1), ('skip_connect', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('skip_connect', 2)], normal_concat=[2, 3, 4, 5], reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2), ('max_pool_3x3', 0), ('max_pool_3x3', 0), ('skip_connect', 2), ('skip_connect', 2), ('avg_pool_3x3', 0)], reduce_concat=[2, 3, 4, 5])
  67. DARTS_V2 = Genotype(normal=[('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 1), ('skip_connect', 0), ('skip_connect', 0), ('dil_conv_3x3', 2)], normal_concat=[2, 3, 4, 5], reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2), ('max_pool_3x3', 1), ('max_pool_3x3', 0), ('skip_connect', 2), ('skip_connect', 2), ('max_pool_3x3', 1)], reduce_concat=[2, 3, 4, 5])
  68. DARTS = DARTS_V2